PRODUCT INFORMATION

Distal Radius System 2.5

APTUS® Wrist
Contents

3 A New Generation of Radius Plates
4 One System for Primary and Secondary Reconstruction
6 ADAPTIVE II Distal Radius Plates
8 FPL Plates
10 Hook Plates
11 Lunate Facet Plates
12 Rim Plates
13 Fracture Plates
14 Correction Plates
15 Volar Frame Plates
16 Extra-Articular Plates
17 Small Fragment Plates
18 Dorsal Frame Plates
19 XL Plates
20 Distal Ulna Plates
21 Fracture Treatment Concept
22 Technology, Biomechanics, Screw Features
24 Precisely Guided Screw Placement
25 Instrument for Reconstruction of the Volar Tilt
26 Storage
27 Overview Screw Trajectories
29 Ordering Information
47 Bibliography

For further information regarding the APTUS product line visit:
www.medartis.com/products
A New Generation of Radius Plates

Why is a new generation of radius plates needed?

Distal radius fractures are the most common fractures of the upper extremities. The knowledge of these fractures has grown enormously over the last years. Treatment concepts have likewise been refined. It is now generally accepted that the best possible anatomical reconstruction of the radiocarpal joint (RCJ) and distal radioulnar joint (DRUJ) to produce a functional outcome is a requirement. Multidirectional and angular stable plate systems have enabled open reduction and internal fixation to become an established treatment method for intra- and extra-articular distal radius fractures. These systems have enabled even severe extension fractures with dorsal defect zones to be precisely repositioned and treated with osteosynthesis via volar access without the need for additional cortico-cancellous bone graft.

Can an established system be further improved?

The literature shows that differentiating treatment strategies, taking into consideration different fracture types and modern implants, are able to lower the rate of complications and significantly improve functional outcomes\(^1\)\(^-\)\(^8\). Complications such as irritations and ruptures of the flexor tendons and extensor tendons are still described in the literature, however\(^10\)\(^-\)\(^20\). These complications are caused by a prominent distal plate design or a plate position that is too distal, for example. Healing of a distal radius fracture in an incorrect position is another common complication. This has a longterm negative effect on the joint geometry with a resultant restriction in wrist mobility, reduction in the grip force, and development of pain and possible early osteoarthritis.

In collaboration with internationally renowned specialists, Medartis has refined its established APTUS radius portfolio to lower the rates of these complications.
One System for Primary and Secondary Reconstruction

Complete system for fracture-specific treatment

ADAPTIVE volar radius plates for very distal placement and for support of the lunate facet and the DRUJ. A selection of different widths and lengths to meet different anatomical requirements.

Hook plates for the treatment of very small distal rim fragments and bony ligament avulsions.

FPL plates for stabilization of the sigmoid notch, the lunate facet and improved radial support. The unique plate design enables a very distal plate position considering the flexor pollicis longus tendon.

Classic styloid-oriented volar plates for the treatment of extension fractures that extend towards the radial styloid.

Volar correction plates indicated for correction osteotomies and extension fractures with radial defect.
Specific small fragment plates for dorsal, volar and radial fixation.

Lunate facet and rim plates for support of volar rim fractures.

Dorsal plates for fractures that cannot be addressed with a volar plate.

XL plates for fixation of combined diaphyseal-metaphyseal radius fractures.
ADAPTIVE II Distal Radius Plates
Support of the lunate facet and the DRUJ

Clinical Benefits
• Improved anatomical fit *
• Stabilization of the sigmoid notch and lunate facet
• Treatment of fractures with ulnar fragments
• Three different widths to meet individual anatomical requirements
• Window enables viewing of the fracture position

Subchondral buttressing of the RCJ and DRUJ due to the possibility of converging screw placement

* Evaluated on 250 cadaver bones
** Clinical case published with the kind permission of: Bernard Schick, Sydney, Australia

→ www.medartis.com/products/aptus/wrist
Specific Plate Features

- TriLock – variable angle of ± 15° in all directions in each screw hole *
- Pre-angled TriLock holes for oriented screw placement specially for the radial styloid
- Rounded edges and a smooth surface for soft tissue protection
- Oblong hole for variable positioning of the plate
- Radiolucent drill guide block available for rapid and easy angulation of screws
- K-wire holes for temporary fixation of the plate

* Exception: oblong hole

Plate Features

Second distal screw row provides stabilization of the dorsal rim
First distal screw row for support of the central aspect of the radio carpal joint
Chamfered distal plate edge
Improved anatomical fit adapted to the volar aspect of the distal radius

www.medartis.com/products/aptus/wrist
FPL Plates
Support of the lunate facet, the DRUJ and the radial styloid

Flexor tendon injury is a recognized complication after open reduction and internal fixation with volar locking plates of distal radius fractures. A major contributing factor to these tendon problems is reported to be plate prominence in the region of the watershed line where the flexor tendons are in direct contact with the bone, hence metal protruding this aspect would inflict immediate irritation of these structures. The flexor pollicis longus (FPL) tendon travels in the distal radial metaphysis over the watershed line between the scaphoid and lunate facets. The placement of a volar plate distal to the watershed line especially in this aspect is therefore a potential cause of FPL tendon injury, as the transverse distal edge of the plate, when placed too distally, would be in direct contact with the FPL tendon.

Clinical Benefits

• Improved anatomical fit *
• Stabilization of the sigmoid notch, the lunate facet and improved radial support
• Very distal plate positioning possible
• Y-shape with a central recess may minimize the contact pressure on the flexor pollicis longus tendon
• Window enables viewing of the fracture position

* Evaluated on 250 cadaver bones

Position of the FPL tendon

→ www.medartis.com/products/aptus/wrist
Specific Plate Features

Radial extension

Chamfered distal plate edge

Recess may minimize the contact pressure on the flexor pollicis longus tendon

Plate positioning of an ADAPTIVE II plate in comparison

Improved anatomical fit adapted to the volar aspect of the distal radius *

Longitudinal section along the axis of the FPL tendon

FPL Plate

ADAPTIVE II Plate

Correction Plate

Plate Features

• TriLock – variable angle of ± 15° in all directions in each screw hole **
• Pre-angled TriLock holes for oriented screw placement specially for the radial styloid
• Rounded edges and a smooth surface for soft tissue protection
• Oblong hole for variable plate positioning

** Exception: oblong hole

• Radiolucent drill guide block available for rapid and easy angulation of screws
• First distal screw row for support of the central aspect of the radio carpal joint
• Second distal screw row provides stabilization of the dorsal rim
• K-wire holes for temporary fixation of the plate

→ www.medartis.com/products/aptus/wrist
Hook Plates

For treatment of small, very distal fracture fragments and bony ligament avulsions

Small fracture fragments that are distal to the watershed line represent a clinical challenge. A conventional volar distal radius plate which is placed distally of the watershed line to fixate these avulsed fragments would lead to flexor tendon irritations and screws for capturing these fragments would be too large.

Clinical Benefits

- Hook plate design to fixate rim fragments and bony ligament avulsions
- Plate can be positioned below the volar plate
- Two different widths to meet individual anatomical requirements

Plate Features

- Low plate profile (0.6 mm) and non-protruding screw heads for soft tissue protection
- Self drilling 1.5 SpeedTip screws for fast and easy insertion

1.5 SpeedTip

Hook plate, 2 holes

Hook plate, 4 holes

Preoperative X-ray

Intraoperative view after fixation of screws

Postoperative X-ray control

⇒ www.medartis.com/products/aptus/wrist
Lunate Facet Plates
Treatment of isolated, volar rim fragments

Clinical Benefits
- Combination of hook and TriLock plate for fixation of isolated, ulnar-sided rim fragments
- Stabilization of the sigmoid notch and the lunate facet
- Distal suture holes for additional soft tissue fixation
- Chamfered distal plate edge for minimal implant protrusion
- Low plate profile of 1.6 mm

Plate Features
- Hook thickness of 0.6 mm
- TriLock – variable angle of ± 15° in all directions in each screw hole *
- Rounded edges and a smooth surface for soft tissue protection
- Oblong hole for variable positioning of the plate
- K-wire holes for temporary fixation of the plate

Clinical case published with the kind permission of: J. Grünert, St. Gallen, Switzerland

* Exception: oblong hole
Rim Plates

Treatment of complex, intra-articular fractures with volar rim fragments

Clinical Benefits

• Bendable distal flaps
 – For support and fixation of volar rim fragments
 – Can be used for the insertion of 1.5 SpeedTip screws or as suture holes for additional soft tissue fixation
• Anatomically pre-contoured plate design
• Improved anatomical fit*
• Low plate profile of 1.8 mm
• First distal screw row for support of the central aspect of the radiocarpal joint
• Second distal screw row provides stabilization of the dorsal rim

Plate Features

• Flap thickness of 0.6 mm, flaps can be bent up to 35°
• TriLock – multidirectional angular stability of ± 15° in all directions in each screw hole **
• Rounded edges and a smooth surface for soft tissue protection
• Oblong hole for variable positioning of the plate
• Radiolucent drill guide block available for rapid and easy angulation of screws
• K-wire holes for temporary fixation of the plate

* Evaluated on 250 cadaver bones
** Exception: oblong hole and flaps

Preoperative CT scan

Intraoperative view of the fracture fixation

→ www.medartis.com/products/aptus/wrist
Fracture Plates

Support of extension fractures with involvement of the radial styloid

Clinical Benefits

• Low plate profile of 1.6 mm
• First distal row can be bent individually to match the anatomy
• Window enables viewing of the fracture position

Plate Features

• TriLock – variable angle of ± 15° in all directions in each screw hole *
• Buttressing of the RCJ and DRUJ due to the possibility of converging screw placement
• Rounded edges and a smooth surface for soft tissue protection
• Oblong hole for variable plate positioning
• K-wire holes for temporary fixation of the plate

* Exception: oblong hole

Clinical case published with the kind permission of: Prof. H. Krimmer, Ravensburg, Germany

Trauma case of a C3 fracture in a 47-year old male patient

Intraoperative view of the plate position

Postoperative X-ray control with anatomical reconstruction and subchondral screw position

www.medartis.com/products/aptus/wrist
Correction Plates

The solution for the treatment of incongruencies both in length and angle

Clinical Benefits

• Low plate profile of 1.6 mm
• Applicable also for complex radius reconstructions
• Fixation of transplant possible
• Distal plate edge for simplified finding and adjusting the ulnar inclination angle
• Support of extension fractures with involvement of the radial styloid

Plate Features

• TriLock – variable angle of ± 15° in all directions in each screw hole *
• Buttressing of the RCJ and DRUJ due to the possibility of converging screw placement
• Rounded edges and a smooth surface for soft tissue protection
• Oblong hole for correction of the length or variable plate positioning
• K-wire holes for temporary fixation of the plate

* Exception: oblong hole

Clinical case published with the kind permission of: H. Krimmer, Ravensburg, Germany

Preoperative X-ray (lateral) with moderate malpositioning
Intraoperative view after fixation of distal screws
Postoperative X-ray (lateral) after healing of correction osteotomy

→ www.medartis.com/products/aptus/wrist
Volar Frame Plates
Unique solution for a less invasive surgical approach

Clinical Benefits
- Low plate profile of 1.6 mm
- Frame design allows for individual adaptation to anatomy
- Double shaft design provides high rotational stability
- Compact plate design for short incisions
- Support of extension fractures with involvement of the radial styloid

Plate Features
- TriLock – variable angle of ± 15° in all directions in each screw hole *
- Buttressing of the RCJ and DRUJ due to the possibility of converging screw placement
- Rounded edges and a smooth surface for soft tissue protection
- Oblong hole for variable plate positioning
- Frame design enables screw placement in the radial as well as the ulnar margin for an even better purchase

* Exception: oblong hole

Trauma case of a C3 fracture in a 68-year old female patient
Intraoperative view of positioning the plate as far distal as possible
X-ray control 4 weeks postoperatively

Clinical case published with the kind permission of: Ch. Ranft, Kiel, Germany
Extra-Articular Plates

Fixation of extra-articular distal radius fractures

Clinical Benefits

• Plate profile of 2.0 mm
• Support of extension fractures with involvement of the radial styloid

Plate Features

• TriLock – variable angle of ± 15° in all directions in each screw hole *
• Buttressing of the RCJ and DRUJ due to the possibility of converging screw placement
• Rounded edges and a smooth surface for soft tissue protection
• Oblong hole for variable plate positioning
• K-wire holes for temporary fixation of the plate

* Exception: oblong hole

Postoperative X-rays

→ www.medartis.com/products/aptus/wrist
Small Fragment Plates

For fracture-specific fixation of isolated small to complex intra-articular distal radius fractures

Clinical Benefits

• Low plate profile of 1.6 mm
• Anatomical plate design, easily contourable to provide the desired fit
• Small fragment plates in L, T and straight design to address individual fracture patterns and anatomies
• Internal fixation of the intermediate and radial column according to the 3 column concept

Plate Features

• TriLock – variable angle of ±15° in all directions in each screw hole *
• Rounded edges and a smooth surface for soft tissue protection
• Oblong hole for variable plate positioning
• K-wire holes for temporary fixation of the plate

* Exception: oblong hole
Dorsal Frame Plates

Fixation of complex fractures and osteotomies of the distal radius

Clinical Benefits

- Low plate profile of 1.6 mm
- Multiple screw holes offer a high degree of intra-operative flexibility
- Anatomical plate design, easily contourable to provide the desired fit

Plate Features

- TriLock – variable angle of ± 15° in all directions in each screw hole *
- Oblong holes for variable plate positioning
- Buttressing of the RCJ and DRUJ due to the possibility of converging screw placement
- Rounded edges and a smooth surface for soft tissue protection
- Offset screw holes in the shafts avoid screw collisions

* Exception: oblong holes

Clinical case published with the kind permission of: R. Steiger, Liestal, Switzerland

- Clinical picture (lateral X-ray of fracture) of a 73-year old female patient
- Intraoperative view after insertion of 12 screws (6 fixation, 6 TriLock); bone defect filled with bone substitute
- Postoperative X-ray control

→ www.medartis.com/products/aptus/wrist
XL Plates

Fixation of combined diaphyseal-metaphyseal radius fractures as well as correction osteotomies

Clinical Benefits

- Stable fixation with a variable plate profile in the shaft of 3.2 mm to 1.8 mm distally
- Two-row screw arrangement in the distal area for subchondral support

Plate Features

- TriLock – variable angle of ± 15° in all directions in each screw hole *
- TriLockPLUS screw holes combine compression and angular stability in one step
- Rounded edges and a smooth surface for soft tissue protection
- Oblong hole for variable plate positioning
- K-wire holes for temporary fixation of the plate
- Buttressing of the RCJ and DRUJ due to the possibility of converging screw placement
- Anatomically pre-contoured plate design in the shaft and distal area available in three different lengths
- Offset screw holes in the shaft avoid screw collisions

* Exception: oblong hole
Distal Ulna Plates

Fixation of intra- and extra-articular fractures of the head and neck of the distal ulna

The ulnar head is the center of rotation for the distal radioulnar joint during pronation and supination and must withstand considerable forces. Its distal ulnar surface also stabilizes the carpus and the hand. Stable fixation of distal ulna fractures ensures the congruence of the joints and allows early mobilization of the wrist.

Clinical Benefits

- Low plate profile of 1.6 mm
- Up to three screws capture and stabilize even distal fragments
- Plate position can be either lateral (ulnar), volar or dorsal
- Anatomical plate design, easily controllable to provide the desired fit
- Two plate lengths to address fractures of the ulnar head, neck and the distal shaft

Plate Features

- TriLock – variable angle of ± 15° in all directions in each screw hole *
- Rounded edges and a smooth surface for soft tissue protection
- Oblong hole for variable plate positioning
- K-wire holes for temporary fixation of the plate
- Anatomically pre-contoured plate design

Clinical cases published with the kind permission of: L. Acciaro, Modena, Italy

* Exception: oblong hole

→ www.medartis.com/products/aptus/wrist
Fracture Treatment Concept

<table>
<thead>
<tr>
<th>Plate Type</th>
<th>Fracture Type</th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>B1.1</th>
<th>B1.2</th>
<th>B1.3</th>
<th>B2</th>
<th>B3</th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>Volar lunate facet fragment</th>
<th>Bony ligament avulsions</th>
<th>Diaphyseal-metaphyseal fracture</th>
<th>Correction osteotomy</th>
</tr>
</thead>
</table>

- **Primary recommendation**
- **Recommendation**
- **Possible**

* Soft tissue protecting plate position along the watershed line to be respected, according to Soong et al.17
Technology, Biomechanics, Screw Features

Multidirectional and angular stable TriLock® locking technology

TriLock Technology

- Patented TriLock locking technology – multidirectional locking of the screw in the plate
 - Spherical three-point wedge-locking
 - Friction locking through radial bracing of the screw head in the plate – without additional tensioning components
- Screws can pivot freely by ±15° in all directions for optimal positioning
- Fine tuning capabilities of fracture fragments
- TriLock screws can be re-locked in the same screw hole at individual angles up to three times
- Minimal screw head protrusion thanks to internal locking contour
- No cold welding between plate and screws

TriLock locking technology – multidirectional locking of the screw in the plate

TriLock screws can be re-locked up to three times

Variable angle of ±15°

Minimal screw head protrusion
Biomechanics

- Internal fixator principle
 - Forces around the distal radius bypass the unstable fracture site
 - Low contact for ideal blood supply
 - Functionally dynamic construct to avoid possible screw stripping and cut-outs in the bone

Screw Features

- Patented HexaDrive screw head design
 - Secure connection between screw and screwdriver
 - Increased torque transmission
 - Simplified screw pick-up due to patented self-holding technology
- Soft tissue protection due to smooth screw head design
- Atraumatic screw tip offers soft tissue protection when inserting screws bicortically
- Increased torsional, bending and shear stability due to conical core
- Precision cut thread profile for sharpness and self-tapping properties
- Double threaded TriLock screws reduce screw insertion time

Patented SpeedTip Thread Design

- Functionally unique cutting with immediate bite
- Immediate cutting of the bone with only slight axial pressure
- The triangular tip design permits simultaneous drilling, tapping and compression of the bone tissue during insertion for increased pull-out stability
- Reduced insertion torque thanks to the polygonal tip and tapered shaft
Precisely Guided Screw Placement

Drill Guide Block Features
- Drill, assign the screw length and insert screws with fixed drill guide block
- Rapid screw insertion and easy to use
- Radiolucent
- Specific left and right drill guide blocks to fit all ADAPTIVE II, FPL and rim plates

Self-Holding Drill Sleeve
- Can be locked in the TriLock contour of the plate in the selected angle
- Multidirectional ± 15°
- Enables single-handed drilling

Holding and Positioning Instrument
The plate holding and positioning instrument can be locked in any TriLock contour of the plate. It facilitates pick-up, positioning and holding the implant on the bone.

K-wire holes for temporary fixation of the plate and for verification of the correct plate and screw positions
Fixed angles to avoid joint penetration
Clear markings for easy identification
Fast fixing and detaching of the drill guide block

www.medartis.com/products/aptus/wrist
Instrument for Restoration of the Volar Tilt

This instrument enables controlled restoration of the volar tilt. After the instrument has been set to the desired angle and locked in the appropriate shaft hole, the plate is premounted to the distal aspect of the radius. After performing an osteotomy, the plate can be reduced to the radius and the desired volar tilt is restored.

- Continuously adjustable restoration angle
- Is locked in the appropriate screw hole
- Precise and comprehensive application

Correction plates

ADAPTIVE II plates

Example with 22°

Easy pick-up, positioning and holding of the hook plate.

www.medartis.com/products/aptus/wrist
Storage

- Customized system arrangement and modular concept
- Compact system
- Easy to use
- Lightweight components
- Validated cleaning and sterilization of the implants

Examples of equipped implant cases

Example of an equipped instrument case

Example of an equipped all-in-one-set

> www.medartis.com/products/aptus/wrist
Overview Screw Trajectories

Screw trajectories for the ADAPTIVE II plates, the FPL and rim plates, without and with drill guide block.

ADAPTIVE II plates (variable angle)*

ADAPTIVE II plates with drill guide block (fixed angle)

*All screw holes of the ADAPTIVE II plates allow for additional angulation of ±15° of the pre-angled value.
FPL plate (variable angle)*

- Proximal: 10°
- Radial: 5°
- Distal: 8°
- Radial: 0°

FPL plate with drill guide block (fixed angle)

- Proximal: 10°
- Radial: 5°
- Distal: 12°
- Radial: 2°

Rim plate (variable angle)*

- Proximal: 5°
- Radial: 0°
- Distal: 2°
- Radial: 1°

Rim plate with drill guide block (fixed angle)

- Proximal: 15°
- Radial: 7°
- Distal: 5°
- Radial: 5°

*All screw holes of the FPL and rim plates allow for additional angulation of ± 15° of the pre-angled value.
Ordering Information

2.5 Drill Guide Blocks, FPL

Material: PEEK

<table>
<thead>
<tr>
<th>Art. No.</th>
<th>Description</th>
<th>for Plates</th>
<th>Holes</th>
<th>Pieces/Pkg</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-2727.13</td>
<td>left</td>
<td>A-4750.123/125</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>A-2727.14</td>
<td>right</td>
<td>A-4750.124/126</td>
<td>6</td>
<td>1</td>
</tr>
</tbody>
</table>

2.5 TriLock Distal Radius Plates FPL, Volar

Material: Titanium (ASTM F67)
Plate thickness: 2.0 mm

<table>
<thead>
<tr>
<th>Art. No.</th>
<th>Description</th>
<th>Holes</th>
<th>Pieces/Pkg</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-4750.123</td>
<td>left</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>A-4750.124</td>
<td>right</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>A-4750.125</td>
<td>left, long</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>A-4750.126</td>
<td>right, long</td>
<td>12</td>
<td>1</td>
</tr>
</tbody>
</table>
2.5 Drill Guide Blocks, ADAPTIVE II

Material: PEEK

<table>
<thead>
<tr>
<th>Art. No.</th>
<th>Description</th>
<th>for Plates</th>
<th>Holes</th>
<th>Pieces/Pkg</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-2727.01</td>
<td>left, narrow</td>
<td>A-4750.101/103</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>A-2727.02</td>
<td>right, narrow</td>
<td>A-4750.102/104</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>A-2727.03</td>
<td>left</td>
<td>A-4750.105/107</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>A-2727.04</td>
<td>right</td>
<td>A-4750.106/108</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>A-2727.05</td>
<td>left, wide</td>
<td>A-4750.109/111</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>A-2727.06</td>
<td>right, wide</td>
<td>A-4750.110/112</td>
<td>9</td>
<td>1</td>
</tr>
</tbody>
</table>

2.5 ADAPTIVE II TriLock Distal Radius Plates, Volar

Material: Titanium (ASTM F67)
Plate thickness: 2.0 mm

<table>
<thead>
<tr>
<th>Art. No.</th>
<th>Description</th>
<th>Holes</th>
<th>Pieces/Pkg</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-4750.101</td>
<td>left, narrow</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>A-4750.102</td>
<td>right, narrow</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>A-4750.105</td>
<td>left</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>A-4750.106</td>
<td>right</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>A-4750.109</td>
<td>left, wide</td>
<td>13</td>
<td>1</td>
</tr>
<tr>
<td>A-4750.110</td>
<td>right, wide</td>
<td>13</td>
<td>1</td>
</tr>
</tbody>
</table>

www.medartis.com/products/aptus/wrist
<table>
<thead>
<tr>
<th>Art. No.</th>
<th>Description</th>
<th>Holes</th>
<th>Pieces/Pkg</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-4750.103</td>
<td>left, narrow, long</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>A-4750.104</td>
<td>right, narrow, long</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>A-4750.107</td>
<td>left, long</td>
<td>13</td>
<td>1</td>
</tr>
<tr>
<td>A-4750.108</td>
<td>right, long</td>
<td>13</td>
<td>1</td>
</tr>
<tr>
<td>A-4750.111</td>
<td>left, wide, long</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>A-4750.112</td>
<td>right, wide, long</td>
<td>15</td>
<td>1</td>
</tr>
</tbody>
</table>
2.5 TriLock Distal Radius Small Fragment Plates

Material: Titanium (ASTM F67)
Plate thickness: 1.6 mm

<table>
<thead>
<tr>
<th>Art. No.</th>
<th>Description</th>
<th>Holes</th>
<th>Pieces/Pkg</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-4750.57</td>
<td>left, curved</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>A-4750.58</td>
<td>right, curved</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>A-4750.131</td>
<td>left</td>
<td>7 (3/4)</td>
<td>1</td>
</tr>
<tr>
<td>A-4750.132</td>
<td>right</td>
<td>7 (3/4)</td>
<td>1</td>
</tr>
<tr>
<td>A-4750.133</td>
<td>L left</td>
<td>8 (4/4)</td>
<td>1</td>
</tr>
<tr>
<td>A-4750.134</td>
<td>L right</td>
<td>8 (4/4)</td>
<td>1</td>
</tr>
<tr>
<td>A-4750.135</td>
<td>lateral</td>
<td>6</td>
<td>1</td>
</tr>
</tbody>
</table>

1.5 Hook Plates

Material: Titanium (ASTM F67)
Plate thickness: 0.6 mm

<table>
<thead>
<tr>
<th>Art. No.</th>
<th>Description</th>
<th>Holes</th>
<th>Pieces/Pkg</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-4200.40</td>
<td>2 hooks</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>A-4200.41</td>
<td>4 hooks</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>
2.5 Drill Guide Blocks, Rim Plates

Material: PEEK

<table>
<thead>
<tr>
<th>Art. No.</th>
<th>Description</th>
<th>for Plates</th>
<th>Holes</th>
<th>Pieces/Pkg</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-2727.23</td>
<td>left</td>
<td>A-4750.145</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>A-2727.24</td>
<td>right</td>
<td>A-4750.146</td>
<td>7</td>
<td>1</td>
</tr>
</tbody>
</table>

2.5 TriLock Distal Radius Rim Plates, Volar

Material: Titanium (ASTM F67)
Plate thickness: 1.8 mm

<table>
<thead>
<tr>
<th>Art. No.</th>
<th>Description</th>
<th>Holes</th>
<th>Pieces/Pkg</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-4750.145</td>
<td>left</td>
<td>13</td>
<td>1</td>
</tr>
<tr>
<td>A-4750.146</td>
<td>right</td>
<td>13</td>
<td>1</td>
</tr>
</tbody>
</table>

2.5 TriLock Lunate Facet Plates, Volar

Material: Titanium (ASTM F67)
Plate thickness: 1.6 mm

<table>
<thead>
<tr>
<th>Art. No.</th>
<th>Description</th>
<th>Holes</th>
<th>Pieces/Pkg</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-4750.37</td>
<td>left</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>A-4750.38</td>
<td>right</td>
<td>7</td>
<td>1</td>
</tr>
</tbody>
</table>
2.5 TriLock Distal Radius Correction Plates, Volar *

Material: Titanium (ASTM F67)
Plate thickness: 1.6 mm

<table>
<thead>
<tr>
<th>Art. No.</th>
<th>Description</th>
<th>Holes</th>
<th>Pieces/Pkg</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-4750.11</td>
<td>left</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td>A-4750.12</td>
<td>right</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td>A-4750.15</td>
<td>left, long</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>A-4750.16</td>
<td>right, long</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>A-4750.17</td>
<td>left, narrow</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>A-4750.18</td>
<td>right, narrow</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>A-4750.19</td>
<td>left, narrow, long</td>
<td>13</td>
<td>1</td>
</tr>
<tr>
<td>A-4750.20</td>
<td>right, narrow, long</td>
<td>13</td>
<td>1</td>
</tr>
</tbody>
</table>

* Plates can also be used for treatment of fractures

www.medartis.com/products/aptus/wrist
2.5 TriLock Distal Radius Fracture Plates, Volar

Material: Titanium (ASTM F67)
Plate thickness: 1.6 mm

<table>
<thead>
<tr>
<th>Art. No.</th>
<th>Description</th>
<th>Holes</th>
<th>Pieces/Pkg</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-4750.01</td>
<td>left</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>A-4750.02</td>
<td>right</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>A-4750.31</td>
<td>left, narrow, short</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>A-4750.32</td>
<td>right, narrow, short</td>
<td>10</td>
<td>1</td>
</tr>
</tbody>
</table>

Scale 1:1

2.5 TriLock Distal Radius Fracture Plates, Extra-Articular, Volar

Material: Titanium (ASTM F67)
Plate thickness: 2.0 mm

<table>
<thead>
<tr>
<th>Art. No.</th>
<th>Description</th>
<th>Holes</th>
<th>Pieces/Pkg</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-4750.71</td>
<td>left</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>A-4750.72</td>
<td>right</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>A-4750.73</td>
<td>left, long</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>A-4750.74</td>
<td>right, long</td>
<td>11</td>
<td>1</td>
</tr>
</tbody>
</table>
2.5 TriLock Distal Radius Frame Plates, Volar

Material: Titanium (ASTM F67)
Plate thickness: 1.6 mm

Art. No.	Description	Holes	Pieces/Pkg
A-4750.03 | left | 10 | 1
A-4750.04 | right | 10 | 1
A-4750.05 | left, long | 12 | 1
A-4750.06 | right, long | 12 | 1
A-4750.33 | left, narrow | 10 | 1
A-4750.34 | right, narrow | 10 | 1
A-4750.35 | left, narrow, long | 12 | 1
A-4750.36 | right, narrow, long | 12 | 1

Scale 1:1

www.medartis.com/products/aptus/wrist
2.5 TriLock Distal Radius Plates, XL, Volar

Material: Titanium (ASTM F67)
Plate thickness: 1.8–3.2 mm

<table>
<thead>
<tr>
<th>Art. No.</th>
<th>Description</th>
<th>Holes</th>
<th>Pieces/Pkg</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-4750.75</td>
<td>left, TriLock¹⁺²⁺</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>A-4750.76</td>
<td>right, TriLock¹⁺²⁺</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>A-4750.77</td>
<td>left, TriLock¹⁺²⁺</td>
<td>25</td>
<td>1</td>
</tr>
<tr>
<td>A-4750.78</td>
<td>right, TriLock¹⁺²⁺</td>
<td>25</td>
<td>1</td>
</tr>
<tr>
<td>A-4750.79</td>
<td>left, TriLock¹⁺²⁺</td>
<td>29</td>
<td>1</td>
</tr>
<tr>
<td>A-4750.80</td>
<td>right, TriLock¹⁺²⁺</td>
<td>29</td>
<td>1</td>
</tr>
</tbody>
</table>
2.5 TriLock Distal Radius Plates, Dorsal

Material: Titanium (ASTM F67)
Plate thickness: 1.6 mm

<table>
<thead>
<tr>
<th>Art. No.</th>
<th>Description</th>
<th>Holes</th>
<th>Pieces/Pkg</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-4750.13</td>
<td>H, left</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>A-4750.14</td>
<td>H, right</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>A-4750.41</td>
<td>frame, left, narrow</td>
<td>18</td>
<td>1</td>
</tr>
<tr>
<td>A-4750.42</td>
<td>frame, right, narrow</td>
<td>18</td>
<td>1</td>
</tr>
<tr>
<td>A-4750.43</td>
<td>frame, left</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>A-4750.44</td>
<td>frame, right</td>
<td>20</td>
<td>1</td>
</tr>
</tbody>
</table>
2.5 TriLock Distal Ulna Plates

Material: Titanium (ASTM F67)
Plate thickness: 1.6 mm

<table>
<thead>
<tr>
<th>Art. No.</th>
<th>Description</th>
<th>Holes</th>
<th>Pieces/Pkg</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-4750.91</td>
<td>Y</td>
<td>7 (2/5)</td>
<td>1</td>
</tr>
<tr>
<td>A-4750.92</td>
<td>Y</td>
<td>10 (2/8)</td>
<td>1</td>
</tr>
</tbody>
</table>

Scale 1:1
2.5 Cortical Screws, HexaDrive 7

Material: Titanium (ASTM F136)

<table>
<thead>
<tr>
<th>Length</th>
<th>Art. No.</th>
<th>Pieces/Pkg</th>
<th>Art. No.</th>
<th>Pieces/Pkg</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 mm</td>
<td>A-5700.08/1</td>
<td>1</td>
<td>A-5700.08</td>
<td>5</td>
</tr>
<tr>
<td>10 mm</td>
<td>A-5700.10/1</td>
<td>1</td>
<td>A-5700.10</td>
<td>5</td>
</tr>
<tr>
<td>11 mm</td>
<td>A-5700.11/1</td>
<td>1</td>
<td>A-5700.11</td>
<td>5</td>
</tr>
<tr>
<td>12 mm</td>
<td>A-5700.12/1</td>
<td>1</td>
<td>A-5700.12</td>
<td>5</td>
</tr>
<tr>
<td>13 mm</td>
<td>A-5700.13/1</td>
<td>1</td>
<td>A-5700.13</td>
<td>5</td>
</tr>
<tr>
<td>14 mm</td>
<td>A-5700.14/1</td>
<td>1</td>
<td>A-5700.14</td>
<td>5</td>
</tr>
<tr>
<td>15 mm</td>
<td>A-5700.15/1</td>
<td>1</td>
<td>A-5700.15</td>
<td>5</td>
</tr>
<tr>
<td>16 mm</td>
<td>A-5700.16/1</td>
<td>1</td>
<td>A-5700.16</td>
<td>5</td>
</tr>
<tr>
<td>18 mm</td>
<td>A-5700.18/1</td>
<td>1</td>
<td>A-5700.18</td>
<td>5</td>
</tr>
<tr>
<td>20 mm</td>
<td>A-5700.20/1</td>
<td>1</td>
<td>A-5700.20</td>
<td>5</td>
</tr>
<tr>
<td>22 mm</td>
<td>A-5700.22/1</td>
<td>1</td>
<td>A-5700.22</td>
<td>5</td>
</tr>
<tr>
<td>24 mm</td>
<td>A-5700.24/1</td>
<td>1</td>
<td>A-5700.24</td>
<td>5</td>
</tr>
<tr>
<td>26 mm</td>
<td>A-5700.26/1</td>
<td>1</td>
<td>A-5700.26</td>
<td>5</td>
</tr>
<tr>
<td>28 mm</td>
<td>A-5700.28/1</td>
<td>1</td>
<td>A-5700.28</td>
<td>5</td>
</tr>
<tr>
<td>30 mm</td>
<td>A-5700.30/1</td>
<td>1</td>
<td>A-5700.30</td>
<td>5</td>
</tr>
<tr>
<td>32 mm</td>
<td>A-5700.32/1</td>
<td>1</td>
<td>A-5700.32</td>
<td>5</td>
</tr>
<tr>
<td>34 mm</td>
<td>A-5700.34/1</td>
<td>1</td>
<td>A-5700.34</td>
<td>5</td>
</tr>
</tbody>
</table>

2.5 TriLock Screws, HexaDrive 7

Material: Titanium (ASTM F136)

<table>
<thead>
<tr>
<th>Length</th>
<th>Art. No.</th>
<th>Pieces/Pkg</th>
<th>Art. No.</th>
<th>Pieces/Pkg</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 mm</td>
<td>A-5750.08/1</td>
<td>1</td>
<td>A-5750.08</td>
<td>5</td>
</tr>
<tr>
<td>16 mm</td>
<td>A-5750.10/1</td>
<td>1</td>
<td>A-5750.10</td>
<td>5</td>
</tr>
<tr>
<td>18 mm</td>
<td>A-5750.12/1</td>
<td>1</td>
<td>A-5750.12</td>
<td>5</td>
</tr>
<tr>
<td>20 mm</td>
<td>A-5750.14/1</td>
<td>1</td>
<td>A-5750.14</td>
<td>5</td>
</tr>
<tr>
<td>22 mm</td>
<td>A-5750.16/1</td>
<td>1</td>
<td>A-5750.16</td>
<td>5</td>
</tr>
<tr>
<td>24 mm</td>
<td>A-5750.18/1</td>
<td>1</td>
<td>A-5750.18</td>
<td>5</td>
</tr>
<tr>
<td>26 mm</td>
<td>A-5750.20/1</td>
<td>1</td>
<td>A-5750.20</td>
<td>5</td>
</tr>
<tr>
<td>28 mm</td>
<td>A-5750.22/1</td>
<td>1</td>
<td>A-5750.22</td>
<td>5</td>
</tr>
<tr>
<td>30 mm</td>
<td>A-5750.24/1</td>
<td>1</td>
<td>A-5750.24</td>
<td>5</td>
</tr>
<tr>
<td>32 mm</td>
<td>A-5750.26/1</td>
<td>1</td>
<td>A-5750.26</td>
<td>5</td>
</tr>
<tr>
<td>34 mm</td>
<td>A-5750.28/1</td>
<td>1</td>
<td>A-5750.28</td>
<td>5</td>
</tr>
</tbody>
</table>

2.5 TriLock Express Screws, HexaDrive 7

Material: Titanium (ASTM F136)

<table>
<thead>
<tr>
<th>Length</th>
<th>Art. No.</th>
<th>Pieces/Pkg</th>
<th>Art. No.</th>
<th>Pieces/Pkg</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 mm</td>
<td>A-5755.14/1</td>
<td>1</td>
<td>A-5755.14</td>
<td>5</td>
</tr>
<tr>
<td>16 mm</td>
<td>A-5755.16/1</td>
<td>1</td>
<td>A-5755.16</td>
<td>5</td>
</tr>
<tr>
<td>18 mm</td>
<td>A-5755.18/1</td>
<td>1</td>
<td>A-5755.18</td>
<td>5</td>
</tr>
<tr>
<td>20 mm</td>
<td>A-5755.20/1</td>
<td>1</td>
<td>A-5755.20</td>
<td>5</td>
</tr>
<tr>
<td>22 mm</td>
<td>A-5755.22/1</td>
<td>1</td>
<td>A-5755.22</td>
<td>5</td>
</tr>
<tr>
<td>24 mm</td>
<td>A-5755.24/1</td>
<td>1</td>
<td>A-5755.24</td>
<td>5</td>
</tr>
</tbody>
</table>
1.5 SpeedTip Screws, HexaDrive 4

<table>
<thead>
<tr>
<th>Length</th>
<th>Art. No.</th>
<th>Pieces/Pkg</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 mm</td>
<td>A-5210.08/1</td>
<td>1</td>
</tr>
<tr>
<td>10 mm</td>
<td>A-5210.10/1</td>
<td>1</td>
</tr>
<tr>
<td>12 mm</td>
<td>A-5210.12/1</td>
<td>1</td>
</tr>
<tr>
<td>14 mm</td>
<td>A-5210.14/1</td>
<td>1</td>
</tr>
</tbody>
</table>

Twist Drills Ø 2.0 mm

<table>
<thead>
<tr>
<th>Art. No.</th>
<th>System Size</th>
<th>Stop</th>
<th>Length</th>
<th>Drill Shaft End</th>
<th>Pieces/Pkg</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-3713</td>
<td>2.5</td>
<td>40 mm</td>
<td>97 mm</td>
<td>Dental</td>
<td>1</td>
</tr>
<tr>
<td>A-3723</td>
<td>2.5</td>
<td>40 mm</td>
<td>97 mm</td>
<td>Stryker J-Latch</td>
<td>1</td>
</tr>
<tr>
<td>A-3733</td>
<td>2.5</td>
<td>40 mm</td>
<td>91 mm</td>
<td>AO Quick Coupling</td>
<td>1</td>
</tr>
</tbody>
</table>

Twist Drills Ø 2.6 mm (for Gliding Hole)

<table>
<thead>
<tr>
<th>Art. No.</th>
<th>System Size</th>
<th>Stop</th>
<th>Length</th>
<th>Drill Shaft End</th>
<th>Pieces/Pkg</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-3711</td>
<td>2.5</td>
<td>10 mm</td>
<td>67 mm</td>
<td>Dental</td>
<td>1</td>
</tr>
<tr>
<td>A-3721</td>
<td>2.5</td>
<td>10 mm</td>
<td>67 mm</td>
<td>Stryker J-Latch</td>
<td>1</td>
</tr>
<tr>
<td>A-3731</td>
<td>2.5</td>
<td>10 mm</td>
<td>61 mm</td>
<td>AO Quick Coupling</td>
<td>1</td>
</tr>
</tbody>
</table>

Material: Titanium (ASTM F136)
Countersink for Cortical Screws

<table>
<thead>
<tr>
<th>Art. No.</th>
<th>System Size</th>
<th>Ø</th>
<th>Length</th>
<th>Shaft End</th>
<th>Pieces/Pkg</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-3830</td>
<td>2.5</td>
<td>3.7 mm</td>
<td>45 mm</td>
<td>AO Quick Coupling</td>
<td>1</td>
</tr>
</tbody>
</table>

K-Wires, Stainless Steel

<table>
<thead>
<tr>
<th>Art. No.</th>
<th>Ø</th>
<th>Description</th>
<th>Length</th>
<th>Pieces/Pkg</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-5040.21</td>
<td>1.2 mm</td>
<td>trocar</td>
<td>150 mm</td>
<td>10</td>
</tr>
<tr>
<td>A-5040.41</td>
<td>1.6 mm</td>
<td>trocar</td>
<td>150 mm</td>
<td>10</td>
</tr>
</tbody>
</table>

K-Wires, Stainless Steel

<table>
<thead>
<tr>
<th>Art. No.</th>
<th>Ø</th>
<th>Description</th>
<th>Length</th>
<th>Pieces/Pkg</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-5042.21</td>
<td>1.2 mm</td>
<td>lancet</td>
<td>150 mm</td>
<td>10</td>
</tr>
<tr>
<td>A-5042.41</td>
<td>1.6 mm</td>
<td>lancet</td>
<td>150 mm</td>
<td>10</td>
</tr>
</tbody>
</table>

Olive K-Wire, Stainless Steel

<table>
<thead>
<tr>
<th>Length</th>
<th>Thread Length</th>
<th>Ø</th>
<th>Art. No.</th>
<th>Pieces/Pkg</th>
<th>Art. No.</th>
<th>Pieces/Pkg</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 mm</td>
<td>10 mm</td>
<td>1.6 mm</td>
<td>A-5045.41/1</td>
<td>1</td>
<td>A-5045.41/4</td>
<td>4</td>
</tr>
</tbody>
</table>

K-Wire Dispensers

<table>
<thead>
<tr>
<th>Art. No.</th>
<th>System Size</th>
<th>Length</th>
<th>Pieces/Pkg</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-6010.12</td>
<td>1.2</td>
<td>185 mm</td>
<td>1</td>
</tr>
<tr>
<td>A-6010.16</td>
<td>1.6</td>
<td>185 mm</td>
<td>1</td>
</tr>
</tbody>
</table>
Drill Guides

Art. No. System Size Description Length Pieces/Pkg
A-2026 2.5/2.8 TriLock® 146 mm 1
A-2721 2.5 for lag screw technique 144 mm 1
A-2722 2.5 scaled 114 mm 1

Drill Sleeve

Art. No. System Size Description Length Pieces/Pkg
A-2726 2.5 self-holding, scaled 34 mm 1

Depth Gauge

Art. No. System Size Description Length Pieces/Pkg
A-2730 2.5 caliper 149 mm 1
A-2730.1 2.5 151 mm 1

Screw Drivers, Self-Holding

Art. No. System Size Interface Length Pieces/Pkg
A-2310 1.2/1.5 HD4 138 mm 1
A-2710 2.5 HD7 166 mm 1
Handle with Quick Connector

Art. No.	Description	Length	for Shaft End	Pieces/Pkg
A-2073 | with twist cap | 124 mm | AO Quick Coupling | 1 |

Screwdriver Blade, Self-Holding

Art. No.	System Size	Description	Length	for Shaft End	Pieces/Pkg
A-2013 | 2.5/2.8 | HD7 | 75 mm | AO Quick Coupling | 1 |

Plate and Screw Holding Forceps

Art. No.	Description	Length	Pieces/Pkg
A-2060 | angled | 148 mm | 1 |

Plate Holding and Positioning Instrument

Art. No.	System Size	Length	Pieces/Pkg
A-2750 | 2.5 | 177 mm | 1 |

Instrument for Restoration of the Volar Tilt

Art. No.	System Size	Description	Length	Pieces/Pkg
A-2794 | 2.5 | | 105 mm | 1 |
A-2795 | 2.0 | guide wire | 105 mm | 1 |
Plate Cutting Pliers

<table>
<thead>
<tr>
<th>Art. No.</th>
<th>System Size</th>
<th>Length</th>
<th>Pieces/Pkg</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-2046</td>
<td>1.2–2.8</td>
<td>207 mm</td>
<td>1</td>
</tr>
</tbody>
</table>

Plate Bending Pliers

<table>
<thead>
<tr>
<th>Art. No.</th>
<th>System Size</th>
<th>Description</th>
<th>Length</th>
<th>Pieces/Pkg</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-2047</td>
<td>2.0–2.8</td>
<td>with pins</td>
<td>158 mm</td>
<td>1</td>
</tr>
</tbody>
</table>

Plate and Bone Holding Forceps

<table>
<thead>
<tr>
<th>Art. No.</th>
<th>Length</th>
<th>Pieces/Pkg</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-7012</td>
<td>140 mm</td>
<td>1</td>
</tr>
</tbody>
</table>
Bone Elevator Mini-Hohmann

<table>
<thead>
<tr>
<th>Art. No.</th>
<th>Width</th>
<th>Length</th>
<th>Pieces/Pkg</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-7006</td>
<td>8 mm</td>
<td>160 mm</td>
<td>1</td>
</tr>
</tbody>
</table>

Periosteal Elevator

<table>
<thead>
<tr>
<th>Art. No.</th>
<th>Width</th>
<th>Length</th>
<th>Pieces/Pkg</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-7007</td>
<td>6 mm</td>
<td>185 mm</td>
<td>1</td>
</tr>
</tbody>
</table>

Hook

<table>
<thead>
<tr>
<th>Art. No.</th>
<th>Description</th>
<th>Length</th>
<th>Pieces/Pkg</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-7009</td>
<td>«Tönnis»</td>
<td>150 mm</td>
<td>1</td>
</tr>
</tbody>
</table>

Wound Retractor Mini-Langenbeck

<table>
<thead>
<tr>
<th>Art. No.</th>
<th>Description</th>
<th>Length</th>
<th>Pieces/Pkg</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-7013</td>
<td>20 x 6 mm</td>
<td>156 mm</td>
<td>1</td>
</tr>
</tbody>
</table>
Bibliography

APTUS

1. Krimmer, H., Pessenlehner, C., Haßelbacher, K., Meier, M., Roth, F., and Meier, R.
 Palmar fixed angle plating systems for unstable distal radius fractures

 Multidirectional Palmar Fixed-Angle Plate Fixation for Unstable Distal Radius Fracture

 Anterior Fixed Angle Plate Fixation of Unstable Distal Radius Fractures

4. Figl, M., Weninger, P., Liska, M., Hofbauer, M., and Leixnering, M.
 Volar fixed-angle plate osteosynthesis of unstable distal radius fractures: 12 months results

5. Weninger, P., Schueller, M., Drobetz, H., Jamek, M., Redi, H., and Tschegg E.
 Influence of an Additional Locking Screw on Fracture Reduction After Volar Fixed-Angle Plating
 – Introduction of the «Protection Screw» in an Extra-Articular Distal Radius Fracture Model

7. Sonderegger, J., Schindele, S., Rau, M., and Gruneret, J. G.
 Palmar multidirectional fixed-angle plate fixation in distal radius fractures: do intraarticular fractures have a worse outcome than extraarticular fractures?

 Complications following palmar plate fixation of distal radius fractures: a review of 665 cases
 Arch Orthop Trauma Surg (2013) 133: 1155–1162

9. Martin Viček, Edib Jaganjac, Jan Pech, David Jonáš, Radek Kebrle
 Is minimally invasive application by intramedullary osteosynthesis in comparison with volar plating real benefit for t in the treatment of distal radius fractures?

10. Sonya P. Agnew, MD, Karin L. Ljunghquist, MD, Jerry I. Huang MD
 Danger Zones for Flexor Tendons in Volar Plating of Distal Radius Fractures

11. Roongsak Limthongthang, MD, Abdo Bachoura, MD, Sidney M. Jacoby, MD, A. Lee Osterman, MD
 Distal Radius Volar Locking Plate Design and Associated Vulnerability of the Flexor Pollicis Longus
 J Hand Surg Am. r Vol. 39, May 2014

 How placement affects force and contact pressure between a volar plate of the distal radius and the flexor pollicis longus tendon: a biomechanical investigation
 J Hand Surg Eur Vol 2013 38

13. Junya Imatani, MD, PhD, Keichi Akita, MD, PhD, Kumiko Yamaguchi, MD, PhD, Hirotaka Shimizu, MD, PhD, Hidenori Kondou, MD, PhD, Toshifumi Ozaki, MD, PhD
 An Anatomical Study of the Watershed Line on the Volar, Distal Aspect of the Radius: Implications for Plate Placement and Avoidance of Tendon Ruptures
 JHS Vol 37A, August 2012

14. Alison Kitay, MD, Morgan Swansonstrom, MD, Joseph J. Schreiber, MD, Michelle G. Carlson, MD, Joseph T. Nguyen, MPH, Andrew J. Weiland, MD, Aaron Dalsiuk, MD
 Volar Plate Position and Flexor Tendon Rupture Following Distal Radius Fracture Fixation
 JHS Vol 38A, June 2013

 Complications following internal fixation of unstable distal radius fracture with a palmar locking-plate
 J Orthop Trauma. 2007;21(5): 316e322

 Incidence and clinical outcomes of tendon rupture following distal radius fracture.

 Volar locking plate implant prominence and flexor tendon rupture

 Limits of Palmar Locking-Plate Osteosynthesis of Unstable Distal Radius Fractures.

 Effect of Distal Radius Volar Plate Position on Contact Pressure Between the Flexor Pollicis Longus Tendon and the Distal Plate Edge.

20. Saeed Asadolahi, Prue P. A. Keith
 Flexor tendon injuries following plate fixation of distal radius fractures: a systematic review of the literature.
 J Orthopaed Traumatol (2013) 14: 227–234

Volar versus Dorsal
(Palmar versus dorsal)

 A Randomised Clinical Study Comparing Palmar and Dorsal Fixed-Angle Plates for the Internal Fixation of AO C-Type Fractures of the Distal Radius in the Elderly.

 First experience with a dorsal plate in modern design for the treatment of distal radius fractures.

Subchondral Buttressing
(Subchondrale Abstützung(1))

23. Keikichi Kawasaki, Tetsuya Nemoto Katsunori Inagaki, Kazunari Tomita, Yukio Ueno
 Variable-angle locking plate with or without double-tiered subchondral support procedure in the treatment of intra-articular distal radius fracture

Radius Correction (Radiuskorrektur)

 Strategy of early corrective osteotomy

Self-Drilling Screws
(Selbstbohrende Schrauben)

25. Heidenmann, W.; Terheyden, H.; Gerlach, K. L.
 Analysis of the osseous / metal interface of drill free screws and self-tapping screws

 In-vivo-Untersuchungen zum Schrauben-Knochen-Kontakt von Drill-Free-Schrauben und herkömmlichen selbstschneidenden Schrauben
 Mund Kiefer GesichtsChir 5 2001: 17–21