medartis® PRECISION IN FIXATION

PRODUCT INFORMATION Distal Radius System 2.5 **APTUS®** Wrist

Contents

- 3 A New Generation of Radius Plates
- 4 One System for Primary and Secondary Reconstruction
- 6 ADAPTIVE II Distal Radius Plates
- FPL Plates 8
- 10 **Hook Plates**
- Lunate Facet Plates 11
- 12 Rim Plates
- 13 Fracture Plates
- 14 **Correction Plates**
- 15 Volar Frame Plates
- 16 Extra-Articular Plates
- 17 **Small Fragment Plates**
- 18 **Dorsal Frame Plates**
- 19 XL Plates
- 20 Distal Ulna Plates
- 21 Fracture Treatment Concept
- 22 Technology, Biomechanics, Screw Features
- 24 Precisely Guided Screw Placement
- 25 Instrument for Reconstruction of the Volar Tilt
- 26 Storage
- 27 Overview Screw Trajectories
- 29 Ordering Information
- 47 Bibliography

For further information regarding the APTUS product line visit: www.medartis.com

A New Generation of Radius Plates

Why is a new generation of radius plates needed?

Distal radius fractures are the most common fractures of the upper extremities. The knowledge of these fractures has grown enormously over the last years. Treatment concepts have likewise been refined. It is now generally accepted that the best possible anatomical reconstruction of the radiocarpal joint (RCJ) and distal radioulnar joint (DRUJ) to produce a functional outcome is a requirement. Multidirectional and angular stable plate systems have enabled open reduction and internal fixation to become an established treatment method for intra- and extra-articular distal radius fractures. These systems have enabled even severe extension fractures with dorsal defect zones to be precisely repositioned and treated with osteosynthesis via volar access without the need for additional cortico-cancellous bone graft.

Can an established system be further improved?

The literature shows that differentiating treatment strategies, taking into consideration different fracture types and modern implants, are able to lower the rate of complications and significantly improve functional outcomes¹⁻⁸. Complications such as irritations and ruptures of the flexor tendons and extensor tendons are still described in the literature, however^{10–20}. These complications are caused by a prominent distal plate design or a plate position that is too distal, for example. Healing of a distal radius fracture in an incorrect position is another common complication. This has a longterm negative effect on the joint geometry with a resultant restriction in wrist mobility, reduction in the grip force, and development of pain and possible early osteoarthritis.

In collaboration with internationally renowned specialists, Medartis has refined its established APTUS radius portfolio to lower the rates of these complications.

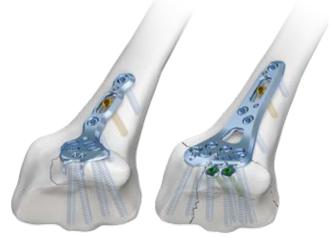
One System for Primary and Secondary Reconstruction

Complete system for fracture-specific treatment

ADAPTIVE volar radius plates for very distal placement and for support of the lunate facet and the DRUJ. A selection of different widths and lengths to meet different anatomical requirements.

Hook plates for the treatment of very small distal rim fragments and bony ligament avulsions.

FPL plates for stabilization of the sigmoid notch, the lunate facet and improved radial support. The unique plate design enables a very distal plate position considering the flexor pollicis longus tendon.

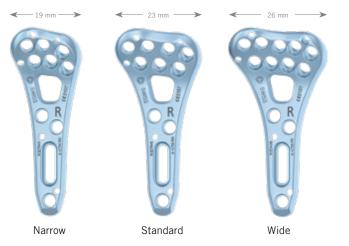

Classic styloid-oriented volar plates for the treatment of extension fractures that extend towards the radial styloid.

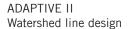
Volar correction plates indicated for correction osteotomies and extension fractures with radial defect.

Specific small fragment plates for dorsal, volar and radial fixation.

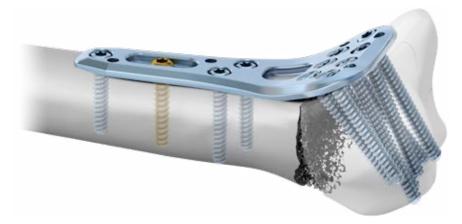
Lunate facet and rim plates for support of volar rim fractures.

Dorsal plates for fractures that cannot be addressed with a volar plate.

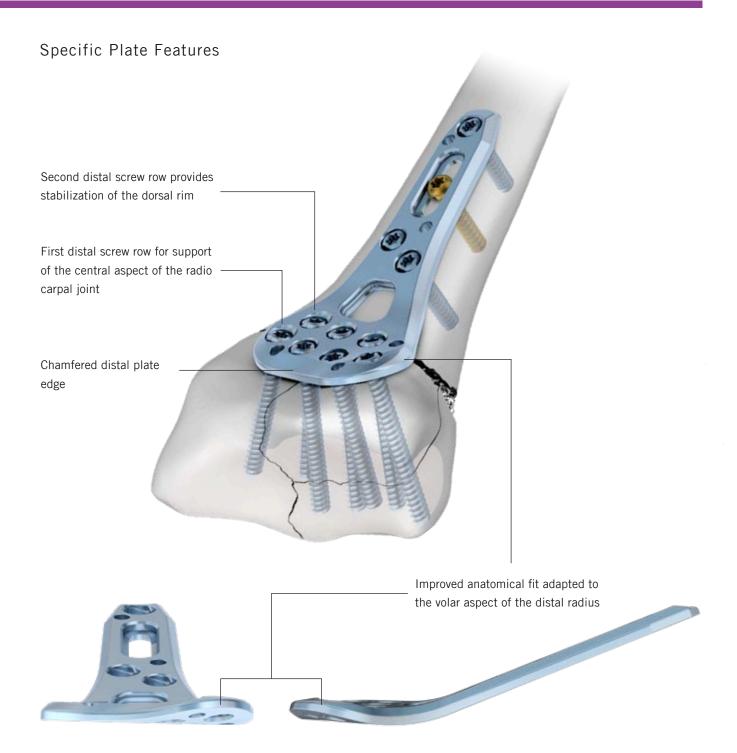

XL plates for fixation of combined diaphyseal-metaphyseal radius fractures.


ADAPTIVE II Distal Radius Plates

Support of the lunate facet and the DRUJ


Clinical Benefits

- Improved anatomical fit *
- Stabilization of the sigmoid notch and lunate facet
- Treatment of fractures with ulnar fragments
- Three different widths to meet individual anatomical requirements
- Window enables viewing of the fracture position


Subchondral buttressing of the RCJ and DRUJ due to the possibility of converging screw placement

^{**} Clinical case published with the kind permission of: Bernard Schick, Sydney, Australia

Female. 77 years. Simple intra-articular fracture **

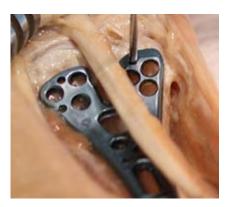
^{*} Evaluated on 250 cadaver bones

Plate Features

- \bullet TriLock variable angle of $\pm~15^\circ$ in all directions in each screw hole *
- Pre-angled TriLock holes for oriented screw placement specially for the radial styloid
- Rounded edges and a smooth surface for soft tissue protection
- * Exception: oblong hole

- Oblong hole for variable positioning of the plate
- Radiolucent drill guide block available for rapid and easy angulation of screws
- K-wire holes to assist with temporary plate fixation

FPL Plates


Support of the lunate facet, the DRUJ and the radial styloid

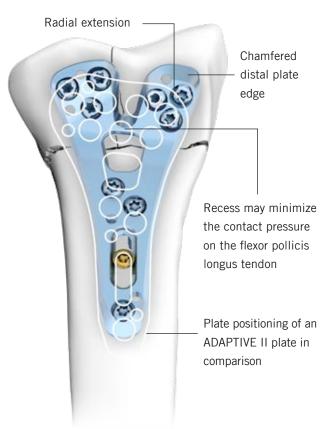
Flexor tendon injury is a recognized complication after open reduction and internal fixation with volar locking plates of distal radius fractures 10-20. A major contributing factor to these tendon problems is reported to be plate prominence in the region of the watershed line where the flexor tendons are in direct contact with the bone, hence metal protruding this aspect would inflict immediate irritation of these structures. The flexor pollicis longus (FPL) tendon travels in the distal radial metaphysis over the watershed line between the scaphoid and lunate facets. The placement of a volar plate distal to the watershed line especially in this aspect is therefore a potential cause of FPL tendon injury, as the transverse distal edge of the plate, when placed too distally, would be in direct contact with the FPL tendon.

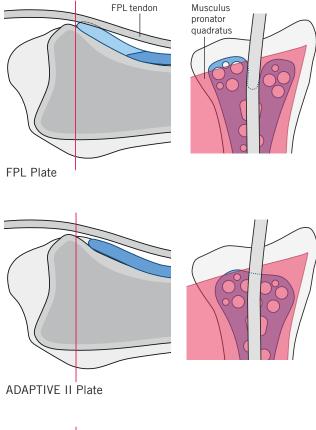
Clinical Benefits

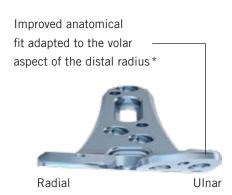
- Improved anatomical fit *
- Stabilization of the sigmoid notch, the lunate facet and improved radial support
- Very distal plate positioning possible

- Y-shape with a central recess may minimize the contact pressure on the flexor pollicis longus tendon
- Window enables viewing of the fracture position

Position of the FPL tendon






^{*} Evaluated on 250 cadaver bones

Specific Plate Features

Longitudinal section along the axis of the FPL tendon

Correction Plate

Plate Features

- \bullet TriLock variable angle of $\pm~15^{\circ}$ in all directions in each screw hole *7
- Pre-angled TriLock holes for oriented screw placement specially for the radial styloid
- Rounded edges and a smooth surface for soft tissue protection
- Oblong hole for variable plate positioning
- ** Exception: oblong hole

- Radiolucent drill guide block available for rapid and easy angulation of screws
- First distal screw row for support of the central aspect of the radio carpal joint
- Second distal screw row provides stabilization of the dorsal
- K-wire holes to assist with temporary plate fixation

Hook Plates

For treatment of small, very distal fracture fragments or bony ligament avulsions respectively

Small fracture fragments that are distal to the watershed line represent a clinical challenge. A conventional volar distal radius plate which is placed distally of the watershed line to

fixate these avulsed fragments would lead to flexor tendon irritations and screws for capturing these fragments would be too large.

Clinical Benefits

- Hook plate design to fixate rim fragments and bony ligament avulsions
- Hook plates can be used as stand-alone implant or underneath a volar plate depending on the fracture pattern
- Two different widths and lengths to meet individual anatomical requirements

Plate Features

- Low plate profile (0.6 mm) and non-protruding screw heads for soft tissue protection
- Self drilling 1.5 SpeedTip screws for fast and easy insertion

Hook plate,

6 holes

Hook plate, 12 holes

1.5 SpeedTip

Hook plate, 2 holes

Hook plate, 4 holes

Preoperative X-ray

Intraoperative view after fixation of screws

Postoperative X-ray control

Lunate Facet Plates

Treatment of isolated, volar rim fragments or bony ligament avulsions respectively

Clinical Benefits

- Combination of hook and TriLock plate for fixation of isolated, ulnar-sided rim fragments
- Stabilization of the sigmoid notch and the lunate facet
- Distal suture holes for additional soft tissue fixation
- Chamfered distal plate edge for minimal implant protrusion
- Low plate profile of 1.6 mm

Plate Features

- Hook thickness of 0.6 mm
- TriLock variable angle of ± 15° in all directions in each screw hole *
- Rounded edges and a smooth surface for soft tissue protection
- Oblong hole for variable positioning of the plate
- K-wire holes to assist with temporary plate fixation

Preoperative X-ray

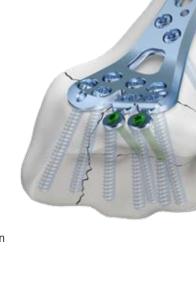
Intraoperative view of plate position

Postoperative X-ray control with anatomical reconstruction

Clinical case published with the kind permission of: J. Grünert, St. Gallen, Switzerland

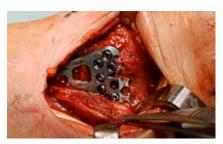
^{*} Exception: oblong hole

Rim Plates


Treatment of complex, intra-articular fractures with volar rim fragments

Clinical Benefits

- Bendable distal flaps
 - For support and fixation of volar rim fragments or bony ligament avulsions respectively
 - Can be used for the insertion of 1.5 SpeedTip screws or as suture holes for additional soft tissue fixation
- Anatomically pre-contoured plate design
- Improved anatomical fit*
- Low plate profile of 1.8 mm
- First distal screw row for support of the central aspect of the radiocarpal joint
- Second distal screw row provides stabilization of the dorsal rim


Plate Features

- Flap thickness of 0.6 mm, flaps can be bent up to 35°
- TriLock multidirectional angular stability of ± 15° in all directions in each screw hole **
- Rounded edges and a smooth surface for soft tissue protection
- Oblong hole for variable positioning of the plate
- Radiolucent drill guide block available for rapid and easy angulation of screws
- K-wire holes to assist with temporary plate fixation

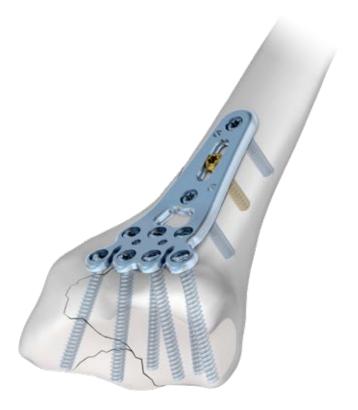
Preoperative CT scan

Intraoperative view of the fracture fixation

^{*} Evaluated on 250 cadaver bones

^{* *} Exception: oblong hole and flaps

Fracture Plates


Support of extension fractures with involvement of the radial styloid

Clinical Benefits

- Low plate profile of 1.6 mm
- First distal row can be bent individually to match the anatomy
- Window enables viewing of the fracture position

Plate Features

- \bullet TriLock variable angle of \pm 15° in all directions in each screw hole *
- Buttressing of the RCJ and DRUJ due to the possibility of converging screw placement
- Rounded edges and a smooth surface for soft tissue protection
- Oblong hole for variable plate positioning
- K-wire holes to assist with temporary plate fixation

Trauma case of a C3 fracture in a 47-year old male patient

Intraoperative view of the plate position

Postoperative X-ray control with anatomical reconstruction and subchondral screw position

Clinical case published with the kind permission of: Prof. H. Krimmer, Ravensburg, Germany

^{*} Exception: oblong hole

Correction Plates

Correction of incongruencies both in length and angle

Clinical Benefits

- Low plate profile of 1.6 mm
- Applicable also for complex radius reconstructions
- Fixation of transplant possible
- Distal plate edge for simplified finding and adjusting the ulnar inclination angle
- Support of extension fractures with involvement of the radial styloid

Plate Features

- \bullet TriLock variable angle of \pm 15° in all directions in each screw hole *
- . Buttressing of the RCJ and DRUJ due to the possibility of converging screw placement
- Rounded edges and a smooth surface for soft tissue protection
- Oblong hole for correction of the length or variable plate
- K-wire holes to assist with temporary plate fixation

Preoperative X-ray (lateral) with moderate malpositioning

Intraoperative view after fixation of distal

Postoperative X-ray (lateral) after healing of correction osteotomy

Clinical case published with the kind permission of: H. Krimmer, Ravensburg, Germany

^{*} Exception: oblong hole

www.medartis.com

Volar Frame Plates

Compact plate design for short incisions

Clinical Benefits

- Low plate profile of 1.6 mm
- Frame design allows for individual adaptation to anatomy
- Double shaft design provides high rotational stability
- Support of extension fractures with involvement of the radial styloid

Plate Features

- TriLock variable angle of ± 15° in all directions in each screw hole *
- Buttressing of the RCJ and DRUJ due to the possibility of converging screw placement
- Rounded edges and a smooth surface for soft tissue protection
- Oblong hole for variable plate positioning
- Frame design enables screw placement in the radial as well as the ulnar margin for an even better purchase

Frame design

Trauma case of a C3 fracture in a 68-year old female patient

Intraoperative view of positioning the plate as far distal as possible

X-ray control 4 weeks postoperatively

Clinical case published with the kind permission of: Ch. Ranft, Kiel, Germany

^{*} Exception: oblong hole

Extra-Articular Plates

Fixation of extra-articular distal radius fractures

Clinical Benefits

- Plate profile of 2.0 mm
- Support of extension fractures with involvement of the radial styloid

Plate Features

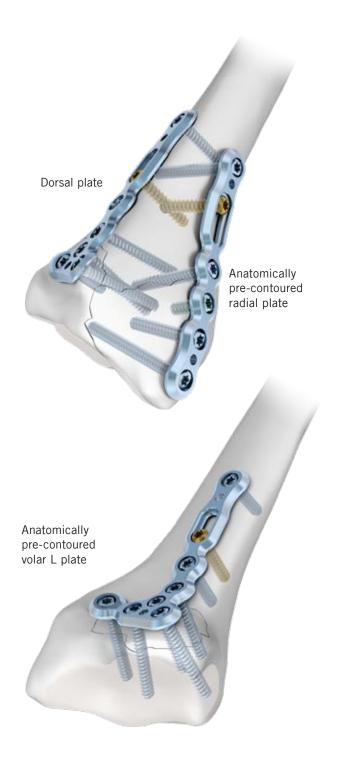
- TriLock variable angle of ± 15° in all directions in each screw hole *
- Buttressing of the RCJ and DRUJ due to the possibility of converging screw placement
- Rounded edges and a smooth surface for soft tissue protection
- Oblong hole for variable plate positioning
- K-wire holes to assist with temporary plate fixation

Postoperative X-rays

^{*} Exception: oblong hole

[→] www.medartis.com

Small Fragment Plates


For fracture-specific fixation of isolated simple to complex intra-articular distal radius fractures

Clinical Benefits

- Low plate profile of 1.6 mm
- Anatomical plate design, easily contourable to provide the desired fit
- Small fragment plates in L, T and straight design to address individual fracture patterns and anatomies
- Internal fixation of the intermediate and radial column according to the 3 column concept

Plate Features

- TriLock variable angle of ± 15° in all directions in each screw hole *
- Rounded edges and a smooth surface for soft tissue protection
- Oblong hole for variable plate positioning
- K-wire holes to assist with temporary plate fixation

^{*} Exception: oblong hole

Dorsal Frame Plates

Fixation of complex fractures of the distal radius

Clinical Benefits

- Low plate profile of 1.6 mm
- Multiple screw holes offer a high degree of intra-operative flexibility
- Anatomical plate design, easily contourable to provide the desired fit

Plate Features

- TriLock variable angle of ± 15° in all directions in each
- Oblong holes for variable plate positioning
- Buttressing of the RCJ and DRUJ due to the possibility of converging screw placement
- Rounded edges and a smooth surface for soft tissue protection
- Offset screw holes in the shafts avoid screw collisions

Clinical picture (lateral X-ray of fracture) of a 73-year old female patient

Intraoperative view after insertion of 12 screws (6 fixation, 6 TriLock); bone defect filled with bone substitute

Postoperative X-ray control

Clinical case published with the kind permission of: R. Steiger, Liestal, Switzerland

- * Exception: oblong holes
- → www.medartis.com

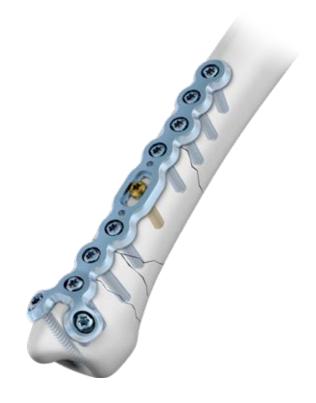
XL Plates

Fixation of combined diaphyseal-metaphyseal radius fractures as well as correction osteotomies

^{*} Exception: oblong hole

Distal Ulna Plates

Fixation of intra- and extra-articular fractures of the neck and head of the distal ulna


The ulnar head is the center of rotation for the distal radioulnar joint during pronation and supination and must withstand considerable forces. Its distal ulnar surface also stabilizes the carpus and the hand. Stable fixation of distal ulna fractures ensures the congruence of the joints and allows early mobilization of the wrist.

Clinical Benefits

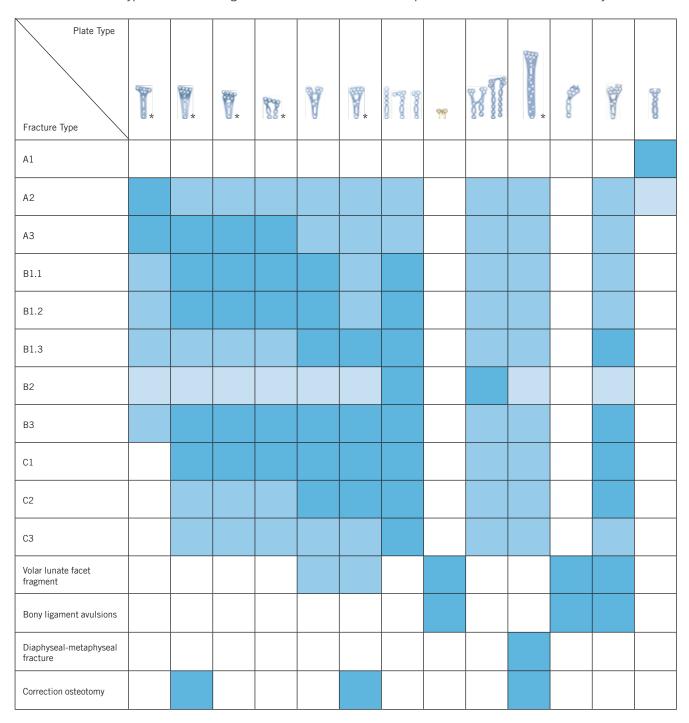
- Low plate profile of 1.6 mm
- Up to three screws capture and stabilize even distal fragments
- Plate position can be either lateral (ulnar), volar or dorsal
- Anatomical plate design, easily contourable to provide the desired fit
- Two plate lengths to address fractures of the ulnar head. neck and the distal shaft

Plate Features

- TriLock variable angle of $\pm 15^{\circ}$ in all directions in each screw hole *
- Rounded edges and a smooth surface for soft tissue
- Oblong hole for variable plate positioning
- K-wire holes to assist with temporary plate fixation
- Anatomically pre-contoured plate design

Preoperative X-rays

Intraoperative view


Postoperative X-ray control with long distal ulna plate

Clinical cases published with the kind permission of: A. Leti Acciaro, Modena, Italy

^{*} Exception: oblong hole

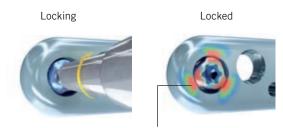
Treatment Concept

The table below lists typical clinical findings which can be treated with the implants of the APTUS Distal Radius System 2.5.

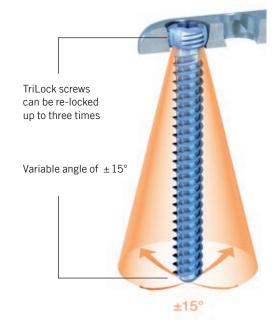
Recommendation

Primary recommendation The above-mentioned information is a recommendation only. The operating surgeon is solely responsible for the choice of the suitable implant for the specific case.

Possible


^{*} Soft tissue protecting plate position along the watershed line to be respected, according to Soong et al.¹⁷

Technology, Biomechanics, Screw **Features**

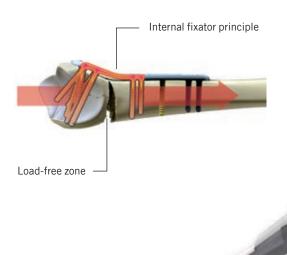

Multidirectional and angular stable TriLock® locking technology

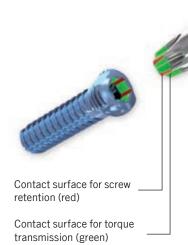
TriLock Technology

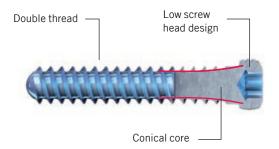
- Patented TriLock locking technology multidirectional locking of the screw in the plate
 - Spherical three-point wedge-locking
 - Friction locking through radial bracing of the screw head in the plate – without additional tensioning components
- Screws can pivot freely by $\pm 15^{\circ}$ in all directions for optimal positioning
- Fine tuning capabilities of fracture fragments
- TriLock screws can be re-locked in the same screw hole at individual angles up to three times
- Minimal screw head protrusion thanks to internal locking
- No cold welding between plate and screws

Patented TriLock locking technology multidirectional locking of the screw in the plate

Minimal screw head protrusion

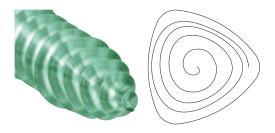



Biomechanics

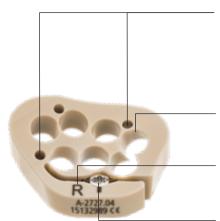

- Internal fixator principle
 - Forces around the distal radius bypass the unstable fracture site
 - Low contact for ideal blood supply
 - Functionally dynamic construct to avoid possible screw stripping and cut-outs in the bone

Screw Features

- Patented HexaDrive screw head design
 - HexaDrive interface with self-holding properties between screw and screwdriver
 - Increased torque transmission
 - Simplified screw pick-up due to patented self-holding
- Soft tissue protection due to smooth screw head design
- Atraumatic screw tip offers soft tissue protection when inserting screws bicortically
- Increased torsional, bending and shear stability due to conical
- Precision cut thread profile for sharpness and self-tapping properties
- Double threaded TriLock screws reduce screw insertion time



Patented SpeedTip Thread Design


- Functionally unique cutting with immediate bite
- Immediate cutting of the bone with only slight axial pressure
- The triangular tip design permits simultaneous drilling, tapping and compression of the bone tissue during insertion for increased pull-out stability^{25–26}
- Reduced insertion torque thanks to the polygonal tip and tapered shaft

Precisely Guided Screw Placement

Drill Guide Block Features

- Drill, assign the screw length and insert screws with fixed drill guide block
- Rapid screw insertion and easy to use
- Radiolucent
- Specific left and right drill guide blocks to fit all ADAPTIVE II, FPL and rim plates

K-wire holes to assist with temporary plate fixation and for verification of the correct plate and screw positions

Fixed angles to avoid joint penetration

Clear markings for easy identification

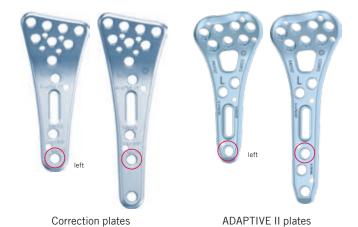
Fast fixing and detaching of the drill guide block

Self-Holding Drill Sleeve

- Can be locked in the TriLock contour of the plate in the selected angle
- Multidirectional ± 15°
- Enables single-handed drilling

Holding and Positioning Instrument

The plate holding and positioning instrument can be locked in any TriLock contour of the plate. It facilitates pick-up, positioning and holding the implant on the bone.



Instrument for Restoration of the Volar Tilt

This instrument enables controlled restoration of the volar tilt. After the instrument has been set to the desired angle and locked in the appropriate shaft hole, the plate is premounted to the distal aspect of the radius. After performing an osteotomy, the plate can be reduced to the radius and the desired volar tilt is restored.

- Continuously adjustable restoration angle
- Is locked in the appropriate screw hole
- Precise and comprehensive application

Instrument position

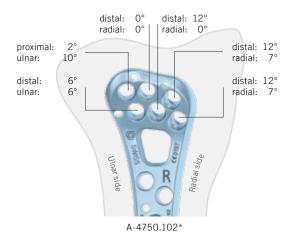
Easy pick-up, positioning and holding of the hook plate.

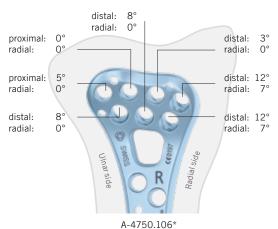
Storage

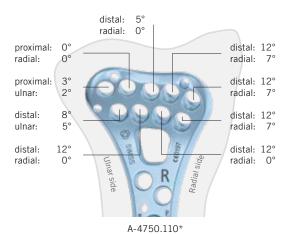
- Customized system arrangement and modular concept
- Compact system
- Easy to use
- Lightweight components
- Validated cleaning and sterilization of the implants

Examples of equipped implant cases

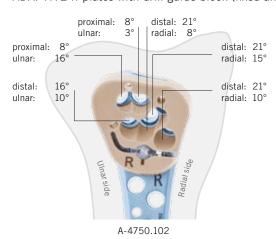
Example of an equipped instrument case

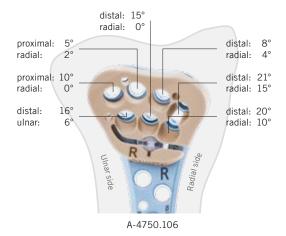


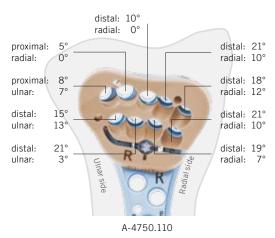

Example of an equipped all-in-one-set


Overview Screw Trajectories

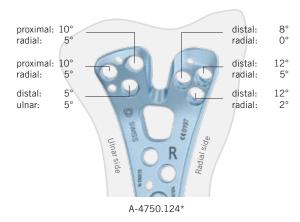
Screw trajectories for the ADAPTIVE II plates, the FPL and rim plates, without and with drill guide block.

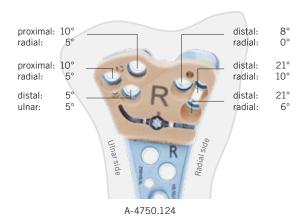

ADAPTIVE II plates (variable angle) *



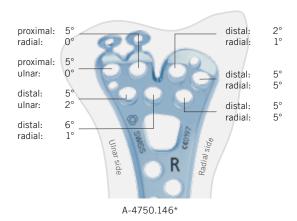


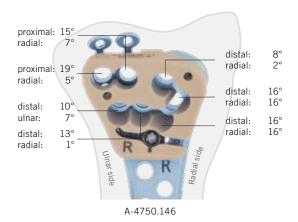
ADAPTIVE II plates with drill guide block (fixed angle)





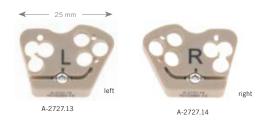
^{*} All screw holes of the ADAPTIVE II plates allow for additional angulation of \pm 15° of the pre-angled value.


FPL plate (variable angle)*


FPL plate with drill guide block (fixed angle)

Rim plate (variable angle) *

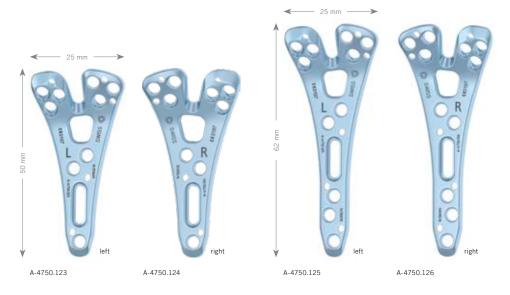
Rim plate with drill guide block (fixed angle)



^{*} All screw holes of the FPL and rim plates allow for additional angulation of $\pm\,15^\circ$ of the pre-angled value.

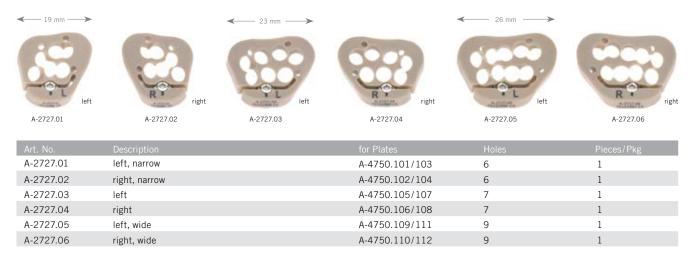
Ordering Information

2.5 Drill Guide Blocks, FPL

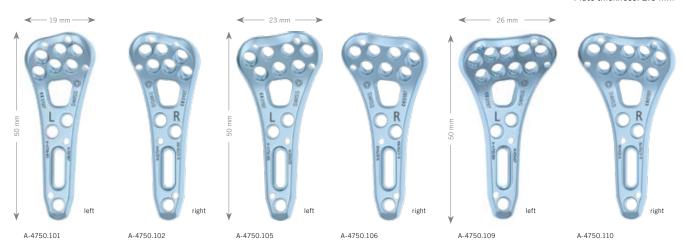

Material: PEEK

Art. No.	Description			Pieces/Pkg
A-2727.13	left	A-4750.123/125	6	1
A-2727.14	right	A-4750.124/126	6	1

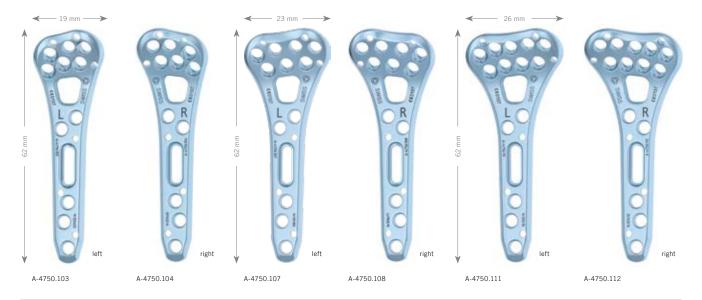
2.5 TriLock Distal Radius Plates FPL, Volar


Material: Titanium (ASTM F67) Plate thickness: 2.0 mm

Art. No.	STERILE	Description	Holes	Pieces/Pkg
A-4750.123	A-4750.123S	left	10	1
A-4750.124	A-4750.124S	right	10	1
A-4750.125	A-4750.125S	left, long	12	1
A-4750.126	A-4750.126S	right, long	12	1


2.5 Drill Guide Blocks, ADAPTIVE II

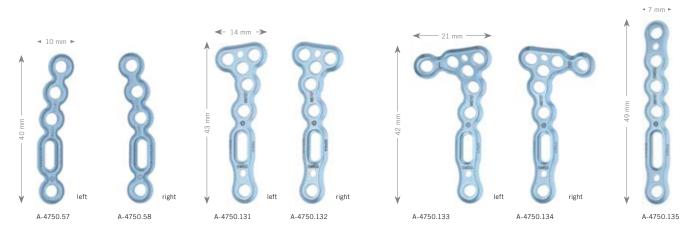
Material: PEEK


2.5 ADAPTIVE II TriLock Distal Radius Plates, Volar

Material: Titanium (ASTM F67) Plate thickness: 2.0 mm

Art. No.	STERILE	Description	Holes	Pieces/Pkg
A-4750.101	A-4750.101S	left, narrow	10	1
A-4750.102	A-4750.102S	right, narrow	10	1
A-4750.105	A-4750.105S	left	11	1
A-4750.106	A-4750.106S	right	11	1
A-4750.109	A-4750.109S	left, wide	13	1
A-4750.110	A-4750.110S	right, wide	13	1

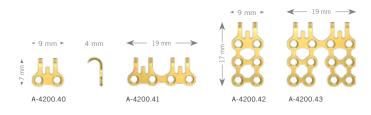
→ www.medartis.com Scale 1:1



STERILE A-4750.103 A-4750.103S 12 left, narrow, long 1 A-4750.104 A-4750.104S right, narrow, long 12 A-4750.107 A-4750.107S left, long 13 1 A-4750.108 A-4750.108S 13 1 right, long A-4750.111 A-4750.111S left, wide, long 15 1 A-4750.112 15 A-4750.112S right, wide, long

Scale 1:1 → www.medartis.com

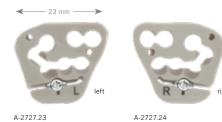
2.5 TriLock Distal Radius Small Fragment Plates


Material: Titanium (ASTM F67) Plate thickness: 1.6 mm

Art. No.	STERILE	Description		Pieces/Pkg
A-4750.57	A-4750.57S	left, curved	5	1
A-4750.58	A-4750.58S	right, curved	5	1
A-4750.131	A-4750.131S	T left	7 (3/4)	1
A-4750.132	A-4750.132S	T right	7 (3/4)	1
A-4750.133	A-4750.133S	L left	8 (4/4)	1
A-4750.134	A-4750.134S	L right	8 (4/4)	1
A-4750.135	A-4750.135S	lateral	6	1

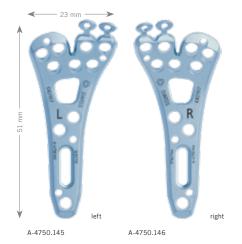
1.5 Hook Plates

Material: Titanium (ASTM F67) Plate thickness: 0.6 mm

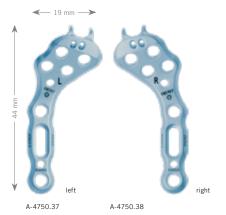


Art. No.	STERILE	Description		Pieces/Pkg
A-4200.40	A-4200.40S	2 hooks	2	1
A-4200.41	A-4200.41S	4 hooks	4	1
A-4200.42	A-4200.42S	2 hooks	6	1
A-4200.43	A-4200.43S	4 hooks	12	1

→ www.medartis.com Scale 1:1


2.5 Drill Guide Blocks, Rim Plates

Material: PEEK

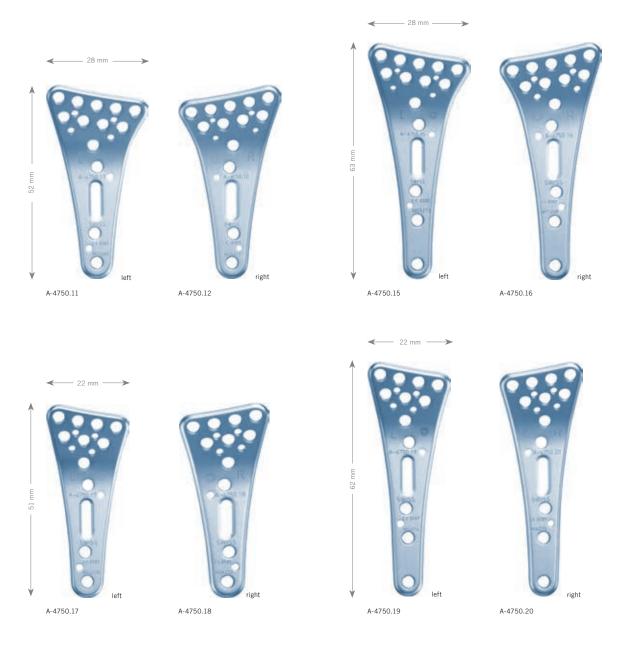

Art. No.	Description	for Plates	Holes	Pieces/Pkg
A-2727.23	left	A-4750.145	7	1
A-2727.24	right	A-4750.146	7	1

2.5 TriLock Distal Radius Rim Plates, Volar

Art. No.	STERILE	Description	Holes	Pieces/Pkg
A-4750.145	A-4750.145S	left	13	1
A-4750.146	A-4750.146S	right	13	1

2.5 TriLock Lunate Facet Plates, Volar

Art. No.	STERILE	Description	Holes	Pieces/Pkg
A-4750.37	A-4750.37S	left	7	1
A-4750.38	A-4750.38S	right	7	1

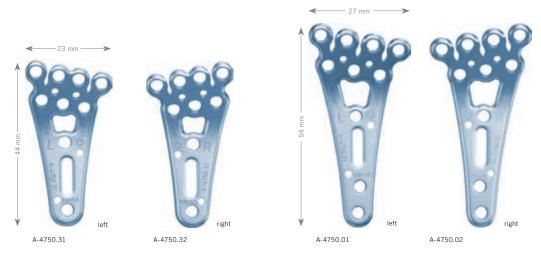

Material: Titanium (ASTM F67) Plate thickness: 1.8 mm

Material: Titanium (ASTM F67) Plate thickness: 1.6 mm

Scale 1:1 → www.medartis.com

2.5 TriLock Distal Radius Correction Plates, Volar *

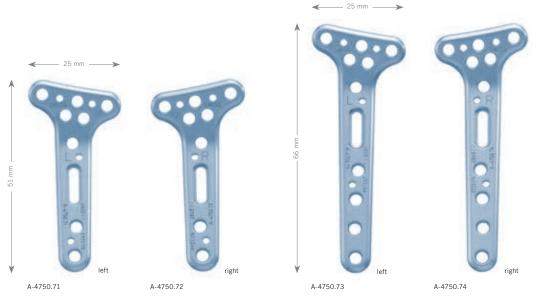
Material: Titanium (ASTM F67) Plate thickness: 1.6 mm


Art. No.	STERILE	Description	Holes	Pieces/Pkg
A-4750.11	A-4750.11S	left	14	1
A-4750.12	A-4750.12S	right	14	1
A-4750.15	A-4750.15S	left, long	15	1
A-4750.16	A-4750.16S	right, long	15	1
A-4750.17	A-4750.17S	left, narrow	12	1
A-4750.18	A-4750.18S	right, narrow	12	1
A-4750.19	A-4750.19S	left, narrow, long	13	1
A-4750.20	A-4750.20S	right, narrow, long	13	1

^{*} Plates can also be used for treatment of fractures

 \rightarrow www.medartis.com Scale 1:1

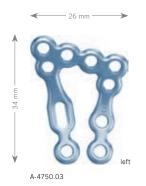
2.5 TriLock Distal Radius Fracture Plates, Volar


Material: Titanium (ASTM F67) Plate thickness: 1.6 mm

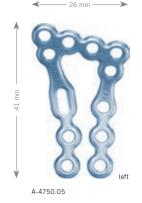
Art. No.	STERILE	Description		Pieces/Pkg
A-4750.01	A-4750.01S	left	11	1
A-4750.02	A-4750.02S	right	11	1
A-4750.31	A-4750.31S	left, narrow, short	10	1
A-4750.32	A-4750.32S	right, narrow, short	10	1

2.5 TriLock Distal Radius Fracture Plates, Extra-Articular, Volar

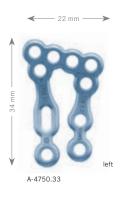
Material: Titanium (ASTM F67) Plate thickness: 2.0 mm

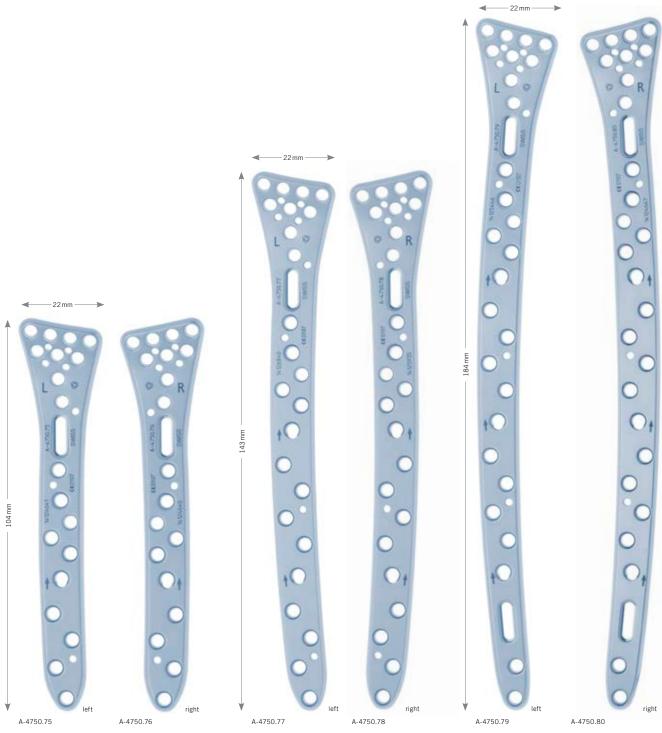


Art. No.	STERILE	Description	Holes	Pieces/Pkg
A-4750.71	A-4750.71S	left	9	1
A-4750.72	A-4750.72S	right	9	1
A-4750.73	A-4750.73S	left, long	11	1
A-4750.74	A-4750.74S	right, long	11	1


Scale 1:1 www.medartis.com

2.5 TriLock Distal Radius Frame Plates, Volar

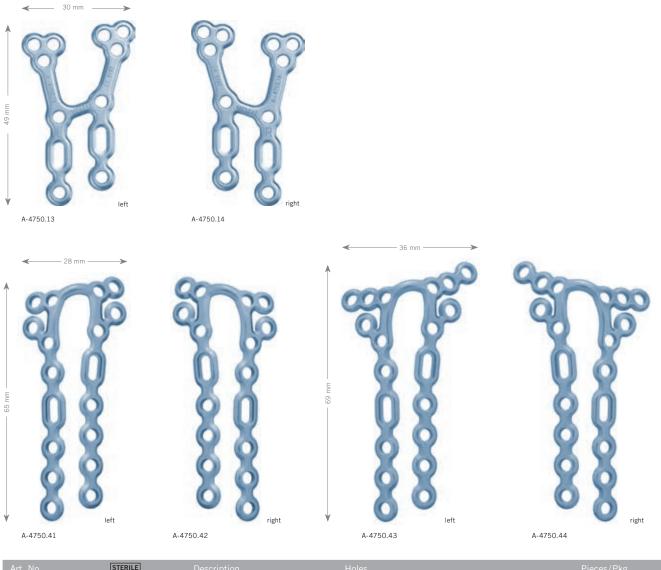

Material: Titanium (ASTM F67) Plate thickness: 1.6 mm



Art. No.	STERILE	Description	Holes	Pieces/Pkg
A-4750.03	A-4750.03S	left	10	1
A-4750.04	A-4750.04S	right	10	1
A-4750.05	A-4750.05S	left, long	12	1
A-4750.06	A-4750.06S	right, long	12	1
A-4750.33	A-4750.33S	left, narrow	10	1
A-4750.34	A-4750.34S	right, narrow	10	1
A-4750.35	A-4750.35S	left, narrow, long	12	1
A-4750.36	A-4750.36S	right, narrow, long	12	1

→ www.medartis.com Scale 1:1

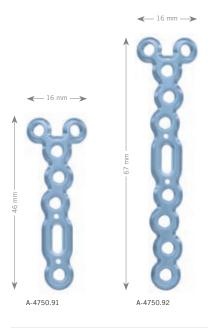
2.5 TriLock Distal Radius Plates, XL, Volar


Material: Titanium (ASTM F67) Plate thickness: 1.8-3.2 mm

Art. No.	STERILE	Description	Holes	Pieces/Pkg
A-4750.75	A-4750.75S	left, TriLockPLUS	20	1
A-4750.76	A-4750.76S	right, TriLock ^{PLUS}	20	1
A-4750.77	A-4750.77S	left, TriLockPLUS	25	1
A-4750.78	A-4750.78S	right, TriLock ^{PLUS}	25	1
A-4750.79	A-4750.79S	left, TriLockPLUS	29	1
A-4750.80	A-4750.80S	right, TriLock ^{PLUS}	29	1

2.5 TriLock Distal Radius Plates, Dorsal

Material: Titanium (ASTM F67) Plate thickness: 1.6 mm



Art. No.	STERILE	Description		Pieces/Pkg
A-4750.13	A-4750.13S	H, left	12	1
A-4750.14	A-4750.14S	H, right	12	1
A-4750.41	A-4750.41S	frame, left, narrow	18	1
A-4750.42	A-4750.42S	frame, right, narrow	18	1
A-4750.43	A-4750.43S	frame, left	20	1
A-4750.44	A-4750.44S	frame, right	20	1

 \rightarrow www.medartis.com Scale 1:1

2.5 TriLock Distal Ulna Plates

Material: Titanium (ASTM F67) Plate thickness: 1.6 mm

Art. No.	STERILE	Description		Pieces/Pkg
A-4750.91	A-4750.91S	Υ	7 (2/5)	1
A-4750.92	A-4750.92S	Υ	10 (2/8)	1

 \rightarrow www.medartis.com Scale 1:1

2.5 Cortical Screws, HexaDrive 7

Material: Titanium alloy (ASTM F136)

Length	Art. No.	STERILE	Pieces/Pkg	Art. No.	Pieces/Pkg
8 mm	A-5700.08/1	A-5700.08/1S	1	A-5700.08	5
10 mm	A-5700.10/1	A-5700.10/1S	1	A-5700.10	5
11 mm	A-5700.11/1		1		
12 mm	A-5700.12/1	A-5700.12/1S	1	A-5700.12	5
13 mm	A-5700.13/1		1		
14 mm	A-5700.14/1	A-5700.14/1S	1	A-5700.14	5
15 mm	A-5700.15/1		1		
16 mm	A-5700.16/1	A-5700.16/1S	1	A-5700.16	5
18 mm	A-5700.18/1	A-5700.18/1S	1	A-5700.18	5
20 mm	A-5700.20/1	A-5700.20/1S	1	A-5700.20	5
22 mm	A-5700.22/1	A-5700.22/1S	1	A-5700.22	5
24 mm	A-5700.24/1	A-5700.24/1S	1	A-5700.24	5
26 mm	A-5700.26/1	A-5700.26/1S	1	A-5700.26	5
28 mm	A-5700.28/1	A-5700.28/1S	1	A-5700.28	5
30 mm	A-5700.30/1	A-5700.30/1S	1	A-5700.30	5
32 mm	A-5700.32/1	A-5700.32/1S	1	A-5700.32	5
34 mm	A-5700.34/1	A-5700.34/1S	1	A-5700.34	5

2.5 TriLock Screws, HexaDrive 7

Material: Titanium alloy (ASTM F136)

Length	Art. No.	STERILE	Pieces/Pkg	Art. No.	Pieces/Pkg
8 mm	A-5750.08/1	A-5750.08/1S	1	A-5750.08	5
10 mm	A-5750.10/1	A-5750.10/1S	1	A-5750.10	5
12 mm	A-5750.12/1	A-5750.12/1S	1	A-5750.12	5
14 mm	A-5750.14/1	A-5750.14/1S	1	A-5750.14	5
16 mm	A-5750.16/1	A-5750.16/1S	1	A-5750.16	5
18 mm	A-5750.18/1	A-5750.18/1S	1	A-5750.18	5
20 mm	A-5750.20/1	A-5750.20/1S	1	A-5750.20	5
22 mm	A-5750.22/1	A-5750.22/1S	1	A-5750.22	5
24 mm	A-5750.24/1	A-5750.24/1S	1	A-5750.24	5
26 mm	A-5750.26/1	A-5750.26/1S	1	A-5750.26	5
28 mm	A-5750.28/1	A-5750.28/1S	1	A-5750.28	5
30 mm	A-5750.30/1	A-5750.30/1S	1	A-5750.30	5
32 mm	A-5750.32/1	A-5750.32/1S	1	A-5750.32	5
34 mm	A-5750.34/1	A-5750.34/1S	1	A-5750.34	5

2.5 TriLock Express Screws, HexaDrive 7

Material: Titanium alloy (ASTM F136)

Length	Art. No.	STERILE	Pieces/Pkg	Art. No.	Pieces/Pkg
14 mm	A-5755.14/1	A-5755.14/1S	1	A-5755.14	5
16 mm	A-5755.16/1	A-5755.16/1S	1	A-5755.16	5
18 mm	A-5755.18/1	A-5755.18/1S	1	A-5755.18	5
20 mm	A-5755.20/1	A-5755.20/1S	1	A-5755.20	5
22 mm	A-5755.22/1	A-5755.22/1S	1	A-5755.22	5
24 mm	A-5755.24/1	A-5755.24/1S	1	A-5755.24	5

→ www.medartis.com Scale 2:1

1.5 SpeedTip Screws, HexaDrive 4

Material: Titanium alloy (ASTM F136)

Length	Art. No.	STERILE	Pieces/Pkg	Art. No.	Pieces/Pkg
8 mm	A-5210.08/1	A-5210.08/1S	1	A-5210.08	5
10 mm	A-5210.10/1	A-5210.10/1S	1	A-5210.10	5
12 mm	A-5210.12/1	A-5210.12/1S	1	A-5210.12	5
14 mm	A-5210.14/1	A-5210.14/1S	1	A-5210.14	5

Twist Drills ∅ 2.0 mm

Art. No.	STERILE	System Size	Stop	Length	Drill Shaft End	Pieces/Pkg
A-3713	A-3713S	2.5	40 mm	97 mm	Dental	1
A-3723	A-3723S	2.5	40 mm	97 mm	Stryker J-Latch	1
A-3733	A-3733S	2.5	40 mm	91 mm	AO Quick Coupling	1

Twist Drills \varnothing 2.6 mm (for Gliding Hole)

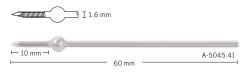
Art. No.	STERILE	System Size	Stop	Length	Drill Shaft End	Pieces/Pkg
A-3711		2.5	10 mm	67 mm	Dental	1
A-3721		2.5	10 mm	67 mm	Stryker J-Latch	1
A-3731	A-3731S	2.5	10 mm	61 mm	AO Quick Coupling	1

Scale 1:1 → www.medartis.com

Countersink for Cortical Screws

Art. No.	STERILE					Pieces/Pkg
A-3830	A-3830S	2.5	3.7 mm	45 mm	AO Quick Coupling	1

K-Wires, Stainless Steel


Art. No.	STERILE	Ø	Description	Length	Pieces/Pkg
A-5040.21		1.2 mm	trocar	150 mm	10
	A-5040.21/2S	1.2 mm	trocar	150 mm	2
A-5040.41		1.6 mm	trocar	150 mm	10
	A-5040.41/2S	1.6 mm	trocar	150 mm	2

K-Wires, Stainless Steel

Art. No.	STERILE	Ø	Description	Length	Pieces/Pkg
A-5042.21		1.2 mm	lancet	150 mm	10
	A-5042.21/2S	1.2 mm	lancet	150 mm	2
A-5042.41		1.6 mm	lancet	150 mm	10
	A-5042.41/2S	1.6 mm	lancet	150 mm	2

Olive K-Wire, Stainless Steel

Length	Thread Length	Ø	Art. No.	Pieces/Pkg	Art. No.	Pieces/Pkg	STERILE	Pieces/Pkg
60 mm	10 mm	1.6 mm	A-5045 41/1	1	A-5045 41/4	4	A-5045 41/2S	2

K-Wire Dispensers

Art. No.	System Size	Length	Pieces/Pkg
A-6010.12	1.2	185 mm	1
A-6010.16	1.6	185 mm	1

→ www.medartis.com Scale 1:1

Drill Guides

A-2722

A-2026

A-2721

Art. No.	System Size	Description	Length	Pieces/Pkg
A-2026	2.5/2.8	TriLockPLUS	146 mm	1
A-2721	2.5	for lag screw technique	144 mm	1
A-2722	2.5	scaled	114 mm	1

Drill Sleeve

Art. No.	System Size	Description		
A-2726	2.5	self-holding, scaled	34 mm	1

Depth Gauge

Art. No.	System Size	Description	Length	Pieces/Pkg
A-2730	2.5		151 mm	1
A-2730.1	2.5	caliper	149 mm	1

Screwdrivers, Self-Holding

Art. No.	System Size	Interface	Length	Pieces/Pkg
A-2310	1.2/1.5	HD4	138 mm	1
A-2710	2.5	HD7	166 mm	1

Handle with Quick Connector

Art. No.	Description			Pieces/Pkg
A-2073	with twist cap	124 mm	AO Quick Coupling	1

Screwdriver Blade, Self-Holding

Art. No.		Description			Pieces/Pkg
A-2013	2.5/2.8	HD7	75 mm	AO Quick Coupling	1

Plate and Screw Holding Forceps

Art. No.	Description		Pieces/Pkg
A-2060	angled	148 mm	1

Plate Holding and Positioning Instrument

Art. No.			Pieces/Pkg
A-2750	2.5	177 mm	1

Instrument for Restoration of the Volar Tilt

Art. No.	System Size	Description	Length	Pieces/Pkg
A-2794	2.5		105 mm	1
A-2795	2.0	guide wire	105 mm	1

→ www.medartis.com Scale 1:2

Plate Cutting Pliers

Art. No.			Pieces/Pkg
A-2046	1 2-2 8	207 mm	1

Plate Bending Pliers

Art. No.		Description		Pieces/Pkg
A-2047	2.0-2.8	with pins	158 mm	1

Bone Holding Forceps

Art. No.	Length	Pieces/Pkg
A-7012	140 mm	1

Bone Elevator Mini-Hohmann

Art. No.			Pieces/Pkg
A-7006	8 mm	160 mm	1

Periosteal Elevator

Art. No.			Pieces/Pkg
A-7007	6 mm	185 mm	1

Hook

Art. No.	Description		Pieces/Pkg
A-7009	«Tönnis»	150 mm	1

Wound Retractor Mini-Langenbeck

Art. No.	Description		Pieces/Pkg
A-7013	20 x 6 mm	156 mm	1

→ www.medartis.com Scale 1:2

Bibliography

APTUS

- Krimmer, H., Pessenlehner, C., Haßelbacher, K., Meier, M., Roth, F., and Meier, R. Palmar fixed angle plating systems for instable distal radius fractures Unfallchirurg, 107[6], 460-467. 2004.
- Mehling, I., Meier, M., Schloer, U., and Krimmer, H. Multidirectional Palmar Fixed-Angle Plate Fixation for Unstable Distal Radius Fracture Handchir, Mikrochir, Plast, Chir, 39[1]. 29-33. 2007.
- 3. Moser, V. L., Pessenlehner, C., Meier, M., and Krimmer, H. Anterior Fixed Angle Plate Fixation of **Unstable Distal Radius Fractures** Operat.Orthop.Traumatol., 16[4], 380-396.
- Figl, M., Weninger, P., Liska, M., Hofbauer, M., and Leixnering, M. Volar fixed-angle plate osteosynthesis of unstable distal radius fractures: 12 months results Arch.Orthop.Trauma Surg., 129[5], 661-669. 2009.
- Weninger, P., Schueller, M., Drobetz, H., Jamek, M., Redl, H., and Tschegg E. Influence of an Additional Locking Screw on Fracture Reduction After Volar Fixed-Angle Plating - Introduction of the «Protection Screw» in an Extra-Articular Distal Radius Fracture Model
 - Journal of Trauma Injury, Infection, and Critical Care, 67[4], 746-751. 2009.
- Figl, M., Weninger, P., Jurkowitsch, J., Hofbauer, M., Schauer, J., and Leixnering, M. **Unstable Distal Radius Fractures in the** Elderly Patient - Volar Fixed-Angle Plate Osteosynthesis Prevents Secondary Loss of Reduction
 - Journal of Trauma Injury, Infection, and Critical Care, 68[4], 992-998. 2010.
- Sonderegger, J., Schindele, S., Rau, M., and Gruenert, J. G. Palmar multidirectional fixed-angle plate fixation in distal radius fractures: do intraarticular fractures have a worse outcome than extraarticular fractures? Arch.Orthop.Trauma Surg., 2010.
- 8. P. Esenwein, J. Sonderegger, J. Gruenert, B. Ellenrieder, J. Tawfik, M. Jakubietz Complications following palmar plate fixation of distal radius fractures: a review of 665 Arch Orthop Trauma Surg (2013) 133: 1155-1162
- Martin Vlček, Edib Jaganjac, Jan Pech, David Jonáš, Radek Kebrle Is minimally invasive application by intramedullary osteosynthesis in comparison with volar plating real benefit in the treatment of distal radius fractures? Bosn J Basic Med Sci 2014; 14 (2): 81-88

Flexor Tendon Rupture (Beugesehnenirritationen und -abrisse)

- 10. Sonya P. Agnew, MD, Karin L. Ljungquist, MD. Jerry I. Huang MD Danger Zones for Flexor Tendons in Volar **Plating of Distal Radius Fractures** J Hand Surg Am. Vol. 40, June 2015
- 11. Roongsak Limthongthang, MD, Abdo Bachoura, MD, Sidney M. Jacoby, MD, A. Lee Osterman, MD
 - Distal Radius Volar Locking Plate Design and Associated Vulnerability of the Flexor Pollicis Longus
 - J Hand Surg Am. r Vol. 39, May 2014
- 12. A. M. Matityahu, S. N. Lapalme, A. Seth, M. T. Marmor, J. M. Buckley and L. L. Lattanza How placement affects force and contact pressure between a volar plate of the distal radius and the flexor pollicis longus tendon: a biomechanical investigation J Hand Surg Eur Vol 2013 38
- 13. Junya Imatani, MD, PhD, Keiichi Akita, MD, PhD, Kumiko Yamaguchi, MD, PhD, Hirotaka Shimizu, MD, PhD, Hidenori Kondou, MD, PhD. Toshifumi Ozaki, MD. PhD An Anatomical Study of the Watershed Line on the Volar, Distal Aspect of the Radius: Implications for Plate Placement and **Avoidance of Tendon Ruptures** JHS Vol 37A, August 2012
- 14. Alison Kitay, MD, Morgan Swanstrom, MD, Joseph J. Schreiber, MD, Michelle G. Carlson, MD, Joseph T. Nguyen, MPH, Andrew J. Weiland, MD, Aaron Daluiski, MD Volar Plate Position and Flexor Tendon **Rupture Following Distal Radius Fracture Fixation** JHS Vol 38A, June 2013
- 15. Arora R, Lutz M, Hennerbichler A, Krappinger D, Espen D, Gabl M Complications following internal fixation of unstable distal radius fracture with a palmar locking-plate J Orthop Trauma. 2007;21(5): 316e322
- 16. White BD, Nydick JA, Karsky D., Williams BD, Hess AV, Stone JD Incidence and clinical outcomes of tendon rupture following distal radius fracture. J Hand Surg Am. 2012; 37(10): 2035e2040.
- 17. Soong M, Earp BE, Bishop G, Leung A, Blazar P. Volar locking plate implant prominence and flexor tendon rupture J Bone Joint Surg Am. 2011; 93: 328-335.
- 18. Arora R, Lutz M, Zimmermann R, Krappinger D, Gabl M, Pechlaner S, Limits of Palmar Locking-Plate Osteosynthesis of Unstable Distal Radius Fractures. Handchir Mikrochir Plast Chir 2007; 39: 34-41.

- 19. Tanaka Y, Aoki M, Izumi T, Fujimiya M, Yamashita T, Imai T, Effect of Distal Radius Volar Plate Position on Contact Pressure Between the Flexor Pollicis Longus Tendon and the Distal Plate Edge. J Hand Surg 2011; 36A: 1790-1797.
- Saeed Asadollahi, Prue P. A. Keith Flexor tendon injuries following plate fixation of distal radius fractures: a systematic review of the literature. J Orthopaed Traumatol (2013) 14: 227-234

Volar versus Dorsal (Palmar versus dorsal)

- 21. Jakubietz, R. G., Gruenert, J. G., Kloss, D. F., Schindele, S., and Jakubietz, M. G. A Randomised Clinical Study Comparing Palmar and Dorsal Fixed-Angle Plates for the Internal Fixation of AO C-Type Fractures of the Distal Radius in the Elderly Journal of Hand Surgery, European Volume 33[5], 600-604, 2008.
- 22. Haefeli, M., Stober, R., Plaass, C., Jenzer, A., and Steiger, R. First experience with a dorsal plate in modern design for the treatment of distal radius fractures Journal of Hand Surgery, European Volume 35E[S1], A-0461. 2010.

Subchondral Buttressing (Subchondrale Abstützung)()

23. Keikichi Kawasaki, Tetsuya Nemoto Katsunori Inagaki, Kazunari Tomita, Yukio Ueno Variable-angle locking plate with or without double-tiered subchondral support procedure in the treatment of intra-articular distal radius fracture J Orthop Traumatol. 2014 Dec; 15(4): 271-4

Radius Correction (Radiuskorrektur)

24. Richter, R., Konul, E., and Krimmer, H. Strategy of early corrective osteotomy Obere Extremität, 5[2], 92-97. 2010.

Self-Drilling Screws (Selbstbohrende Schrauben)

- Heidemann, W.; Terheyden, H.; Gerlach, K. L. Analysis of the osseous / metal interface of drill free screws and self-tapping screws Journal of Cranio-Maxillofacial Surgery (2001) 29, 69-74
- Heidemann, W.; Terheyden, H.; Gerlach, K. L. In-vivo-Untersuchungen zum Schrauben-Knochen-Kontakt von Drill-Free-Schrauben und herkömmlichen selbstschneidenden Schrauben

Mund Kiefer GesichtsChir 5 2001: 17-21

 $WRIST-11000001_v4 \, / \, @ \, 2019-12, \, Medartis \, AG, \, Switzerland. \, All \, technical \, data \, subject \, to \, alteration.$

MANUFACTURER & HEADQUARTERS

Medartis AG | Hochbergerstrasse 60E | 4057 Basel/Switzerland P +41 61 633 34 34 | F +41 61 633 34 00 | www.medartis.com

SUBSIDIARIES

Australia | Austria | Brazil | France | Germany | Japan | Mexico | New Zealand | Poland | UK | USA

For detailed information regarding our subsidiaries and distributors, please visit www.medartis.com

